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Abstract—The Maximum Likelihood Probabilistic Multi-
Hypothesis Tracker (ML-PMHT) can be used as a powerful
multisensor, low-observable, multitarget tracker. It is a non-
Bayesian algorithm that uses a generalized likelihood ratio (LR)
test to differentiate between clutter and target tracks. Prior
to this work, the detection threshold used for target track
acceptance was determined either through trial and error or
with lengthy Monte-Carlo simulations. We present a new method
for determining this threshold by assuming that the clutter is
uniformly distributed in the search space, and then treating the
log-likelihood ratio (LLR) as a random variable transformation.
In this manner, we can obtain an expression for the PDF of the
likelihood function caused by clutter. We then use extreme value
theory to obtain an expression for the PDF of the peak point of
the LLR surface due to clutter. From this peak PDF, we can then
calculate a threshold based on some desired (small) false track
acceptance probability.

Keywords: ML-PDA, ML-PMHT, multistatic, bistatic,
tracking, extreme value, thresholds for track acceptance

I. INTRODUCTION

The Maximum Likelihood Probabilistic Multi-Hypothesis
Tracker (ML-PMHT) is a powerful multisensor, low-
observable (i.e. received target SNR less than 10 dB even
after signal processing) multitarget tracker. It is a variant
of the Maximum Likelihood Probabilistic Data Association
(ML-PDA) tracker, which was first developed in [8] and was
subsequently expanded in [4] and [9]. The idea behind ML-
PMHT originated with [1], [16], [17] and [18], with more
recent work done in [13] and [15]. These last two works
highlight some advantages for ML-PMHT over ML-PDA —
ML-PMHT can be easily implemented in true multitarget
form, and it has a relatively straightforward and fast method
for estimating the covariance of the state estimate. The LLR
(log-likelihood ratio) for ML-PMHT is also simpler to express
than the LLR for ML-PDA, which makes the random variable
transformations that will be done in this work tractable. For
these reasons, working with the ML-PMHT LLR is the focus
of this paper.

Previous work in [2] presented a method for determining
a track acceptance threshold for ML-PDA; the same method
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can be applied to ML-PMHT. Basically, for a certain set of
problem parameters such as search volume, clutter density,
probability of detection, signal-to-noise ratio, etc., the ML-
PMHT LLR can be simulated and then maximized; if this
is done repeatedly with Monte Carlo trials the empirical
PDF (probability density function) of the maximum point
in the LLR due to clutter can be obtained. The problem
with this approach is that it is an extremely time-consuming
process, taking anywhere from hours to days, and if any of the
parameters change, the thresholds must be recomputed. Often,
this threshold determination method takes long enough that in
past works [6], [12], a combination of this method and trial
and error was used to find an appropriate tracking threshold for
ML-PMHT implementations. The work in [2] did also develop
a “real-time” method for track-validation for ML-PDA, but its
accuracy was not as good as the “off-line” approach described
above. We seek the accuracy of the off-line method in real-
time speed.

To do this, we take a novel approach to the problem.
Instead of having a fixed set of measurements Z and finding
the state parameter vector x that maximizes the ML-PMHT
LLR for the received measurements, we assume we have
some arbitrary parameter x, and all the measurements Z are
random variables that are uniformly distributed when there is
no target in the search space (which, as will soon be discussed,
can be anywhere from one- to three-dimensional). The ML-
PMHT LLR is simply treated as a transformation of the clutter
(uniformly distributed) random variables. This transformation
produces an expression that represents the PDF of the ML-
PMHT LLR in the absence of a target. We then employ
extreme value theory [3], [5], [7] to develop a PDF for the
maximum value of the LLR. With the PDF describing the
maximum value in the LLR due to clutter, we can then employ
the Neyman-Pearson lemma [11] to obtain a threshold that will
give us a certain false track acceptance probability.

II. EXTREME-VALUE CLUTTER PDFS

Extreme-value (EV), namely, Gumbel PDFs caused by
clutter are calculated for four cases: one-dimensional mea-
surements (bearing-only or time-delay-only), two-dimensional
measurements (bearing and time-delay), three dimensional
measurements (bearing, time-delay, and Doppler), or two-
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dimensional measurements with amplitude. First consider the
ML-PMHT log-likelihood ratio (LLR), which can be written
as [12]

Λ(x, Z) =
Nw
∑

i=1

mi
∑

j=1

ln

{

1 +
π1

π0
V p[zj(i)|x]

}

(1)

where Nw is the number of scans in a batch, Z is the
entire set of measurements in a batch, mi is the number of
measurements in the ith scan, zj(i) is the jth measurement
in the ith scan, π1 is the prior probability that a given
measurement is from the target, π0 is the prior probability that
a given measurement is from clutter, V is the measurement
search volume, p[zj(i)|x] is a target-centered Gaussian, and x

is the target parameter vector. Now consider the LLR for just
a single measurement from (1), which is written in a slightly
modified form

Λ1(z) = ln

{

1 + Kd exp

[

−
1

2

d
∑

l=1

(zl − µl)2

σ2
l

]}

(2)

where zl is the lth component of z and we define

Kd =
π1

π0

V
√

|2πRd|
d ∈ {1, 2, 3} (3)

Here d is the dimensionality of the measurement, and Rd is
the measurement covariance matrix. Now, simply treat (2) as
the transformation of a random variable

w ! Λ1(z) (4)

If the PDF of a scalar z is given by pz(z), the PDF of w is
given by

pw(w) = pz[Λ
−1
1 (w)]

∣

∣

∣

∣

dz

dw

∣

∣

∣

∣

(5)

For a one-dimensional uniformly distributed (clutter) measure-
ment, the transformed PDF is

pw(w) =
2

V

σ1 exp(w)
√

2 ln 1−exp(w)
K1

1

exp(w) − 1

0 ≤ w ≤ ln(1 + K1) (6)

For two-dimensional measurements, the transformed PDF is
[14]

pw2
(w2) =

{

Cδ(w2) w2 = 0

2π σ1σ2

V1V2

exp(w2)
exp(w2)−1 0 < w2 ≤ ln(1 + K2)

(7)
where δ is a Dirac delta function and C is a normalization
constant that is scaled so that the entire PDF integrates to 1.
For three dimensions, the transformed PDF is [14]

pw3
(w3) =















Cδ(w3) w3 = 0

4π
√

2σ1σ2σ3

V1V2V3

exp(w3)
exp(w3)−1

√

ln
(

K3

exp(w3)−1

)

0 < w3 ≤ ln(1 + K3)
(8)

Finally, a closed-form solution can also be obtained for the 2-
D case with amplitude information, where both the target and
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Figure 1. Three-dimensional ML-PMHT PDFs

clutter amplitude have a Rayleigh distribution. The resultant
PDF in this case is [14]

pw2a
(w2a) =















Cδ(w2a) w2a = 0

2πσ1σ2

V1V2

[

1 − eτ
(

ew2a−1
K′

)

1

Kσ

]

exp(w2a)
exp(w2a)−1

0 < w2a ≤ ln
(

1 + K ′

2e
−Kστ

)

(9)
Here, τ is the detector threshold in units of intensity, σ2 is the
expected target power, and

K ′

2 =
K2

σ2
eKστ (10)

and

Kσ =
1 − σ2

σ2
(11)

At this point, we have the PDF for a single transformed
clutter measurement – now we want the PDF for a batch of
measurements, as represented by (1). This can done simply
by adding the N IID (independent identically distributed)
single-measurement RVs (where N is the total number of
measurements in the batch — i.e. N =

∑Nw

i=1 mi), each of
which has the common PDF (dependent on the measurement
dimensionality) given by (6), (7), (8), or (9). Such a PDF can
be calculated in two ways — either by directly convolving the
relevant single-measurement PDF with itself N − 1 times, or
calculating its characteristic function, raising it to the power
N , and then transforming this product back to a PDF. An
example result for the batch and peak PDFs (to be discussed
below) for the 3-D case is shown in Figure 1.

At this point, we have batch PDFs; they represent the pos-
sible values of the entire ML-PMHT LLR surface. However,
we wish to describe the PDF of the peak point of the clutter-
induced LLR. This is done by invoking extreme-value theory.
If the batch PDF is sampled M times, and the samples are
ordered, then the PDF of the maximum sample can be equated
to the peak clutter PDF. We choose M such that if we were
sampling the ML-PMHT LLR on a grid, the maximum sample
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M = 10 σ1

µ1

ε

Figure 2. Relationship between number of samples M and distance ε from
LLR peak. The blue curve is a representative global peak in the ML-PMHT
LLR.

would be as close to the “true” peak caused by clutter as
we could get by using some iterative optimization technique.
Figure 2 illustrates this. From this, the number of samples M
required to get within ε of the true peak (the same accuracy
we would get with optimization) can be shown to be [14]

M =
1

2

√

maveV

σ1ε

K1

K1 + 1
+ 1 (12)

Here, σ1 is the measurement noise standard deviation (in one
dimension), and mave is the average number of measurements
in a scan. Overall, the required number of measurements
must be calculated for each measurement dimension; the total
number of required measurements Mtot is then the product of
the required number of measurements from each dimension.

At this point we have the PDF for the entire ML-PMHT
LLR surface caused by clutter, and the number of samples
Mtot needed to obtain the accuracy ε that would be obtained
by a properly implemented numerical optimization routine. If
the PDF for the entire ML-PMHT LLR surface (caused just by
clutter) is sampled Mtot times, and the samples are ordered,
the PDF of the maximum sample can be used to represent the
PDF of the peak in the LLR that would be obtained through
optimization.

Previous work from [2] showed that this peak PDF is a
Gumbel distribution. This distribution has the form [7]

f(x) =
1

β
exp

[

−
(

x − ν

β

)

− exp

(

−
x − ν

β

)]

(13)

If F−1(x) is the inverse CDF of the underlying distribution
that is being sampled, then the parameters ν and β in (13) can
be obtained as [3]

ν = F−1

(

1 −
1

Mtot

)

(14)

and

β = F−1

(

1 −
1

eMtot

)

− ν (15)

One possible concern is that the above extreme value theory
applies to a sequence of IID random variables; if we actually
sample the ML-PMHT LLR at a close enough grid spacing,
there will be dependence between some samples. This is
because samples that are relatively close together will be
influenced (i.e. the LLR will take on value) from the same
measurement, so intuitively, these samples will be dependent.
However, other work in extreme value theory [10] shows
that the PDF of the maximum sample from an identical yet
dependent sequence will asymptotically converge to the IID
case. For the ML-PMHT, (12) will produce values of Mtot

that are large enough (typically 107 ≤ Mtot ≤ 1010) so that
it is reasonable to assume this convergence has occurred.

In order to obtain the Gumbel distribution parameters, it is
necessary to obtain the CDF of the distribution that represents
a batch of measurements for the ML-PMHT LLR. There
is no convenient closed-form expression for this CDF that
can easily be inverted. The closest available CDF will be a
numerical integration of the PDF that represents the batch ML-
PMHT LLR. In theory it is simple to numerically invert the
CDF of the batch and find the constants ν and β from (14)
and (15). However, the number Mtot is typically large, so
0.99 < 1 − 1/Mtot, 1 − 1/eMtot < 1. Trying to numerically
invert the CDF at the extreme right side can lead to numerical
calculation inaccuracies. It is more accurate to approximate the
right-hand side of the CDF with the easily invertible closed-
form expression. To this end, the CDF F (x) is approximated
with

Fapprox(x) = 1 − exp
[

−k(x − m)l
]

(16)

The parameters k, m, and l are fit to the numerical CDF in
the region F (x) > 0.95 using Matlab’s Optimization Toolbox.
This expression is easily invertible; letting Fapprox(x) = φ and
solving for x produces

x = m +

[

−
1

k
ln(1 − φ)

]
1

l

(17)

At this point, combining (17), (14), and (15) gives final
expressions for the parameters of the Gumbel distribution

ν = m +

[

1

k
ln(Mtot)

]
1

l

(18)

and

β =

[

1

k
+

1

k
ln(Mtot)

]
1

l

−
[

1

k
ln(Mtot)

]
1

l

(19)

With this, it is possible to write the Gumbel distribution that
represents the peak in the ML-PMHT LLR surface caused by
clutter.

III. THRESHOLD DETERMINATION

At this point, the extreme value distribution (peak PDF)
from clutter is used to generate tracking thresholds. These
results are compared to thresholds developed via the (much
slower) method described in [2] — i.e. repeatedly simulating
and optimizing a (clutter-only) ML-PMHT LLR surface.
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Table I
VALUE USED FOR THRESHOLD DETERMINATION

1-Dimensional Parameters

Angular volume 180◦

Angular error 2◦

Ave meas per scan 10
Number of scans 60

π1 0.05
π0 0.95

2-D and 3-D Parameters

Angular volume 360◦

Angular error 5◦

Time delay volume 60 sec
Time delay error 0.1 sec

Range-rate volume 30 units per sec
Range-rate error 0.5 units per sec

Amplitude threshold 7 dB
Expected target amplitude 10 dB

Ave meas per scan 9.8
Number of scans 11

π1 0.15
π0 0.85

Table II
COMPARISON OF MODEL VS. EMPIRICAL TRACKING THRESHOLDS

(DIMENSIONLESS UNITS FOR LLR)

Model Empirical Empirical 95%
Confidence Interval

1-D 41.8 42.0 [41.9, 42.2]
2-D 27.0 27.3 [26.7, 27.9]
3-D 21.8 21.9 [21.5, 22.4]

2-D amp 23.5 23.0 [22.5, 23.6]

For the Gumbel distribution, the CDF (and a threshold) is
easily calculable once the parameters for the PDF are known.
For a Gumbel distribution (13), the CDF is given by

F (x) = exp
(

−e−
x−ν

β

)

(20)

Then, for a desired probability of false track acceptance L, the
threshold κ is found by inverting the CDF

κ = ν − β ln

(

ln
1

1 − L

)

(21)

The problem parameters that were used to calculate “model”
thresholds are listed in Table I. Next, results from the model
threshold determination and actual Monte Carlo testing are
shown in Table II. (The value of L used for both the model and
empirical results was 0.01.) The model-based threshold values
are very close to the actual empirical threshold values obtained
from Monte Carlo testing. It was far faster to calculate the
model-based values — each needed only on the order of
several seconds. In contrast, the actual values obtained by
simulating and optimizing multiple clutter surfaces were much
more time-consuming to calculate — for 5000 Monte Carlo
runs, it took on the order of 10 hours to obtain each value.

IV. CONCLUSIONS

We have presented a novel method for determining the PDFs
describing the maximum points in the ML-PMHT LLR caused

by clutter using random variable transformations. The EV
distribution describing the peak point (global maximum) in the
LLR due to clutter can be used to quickly and easily determine
a track acceptance threshold; previously, this had to be done
either through trial-and-error or with very time consuming
optimizations of Monte Carlo simulations. Thresholds ob-
tained in this manner match up extremely well with thresholds
obtained by (the much more time consuming) Monte-Carlo
simulation and optimization of ML-PMHT LLR surfaces. The
ability to rapidly and accurately determine tracking thresholds
adds significant capability to the ML-PMHT multistatic active
tracking framework and other applications.
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