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Abstract—This paper introduces a near-field reduced rank
adaptive beamforming method for nulling more interferers than
sensors using fully augmentable arrays in wide sense stationary
interference. Augmentable arrays, such as minimally redundant
or co-prime, can exploit additional degrees of freedom beyond
the number of sensors in spatially stationary fields in order to
increase array gain. However, near-field targets result in spatial
non-stationarity due to range dependent wavefront curvature.
Additionally, source or array motion limits the number of
available snapshots. Adaptive near-field beamforming with far-
field interference suppression is considered by nulling in the
augmented, or co-array, dimensions but steering in the near-
field with sensors in their physical locations. A reduced rank
processing scheme is used that requires fewer snapshots than
full rank methods. The proposed technique is shown to increase
array gain when the number of interferers exceeds the number
of sensors in both high and low snapshot support regions.

I. INTRODUCTION

Near-field dynamic targets introduce a non-stationary com-
ponent both spatially, through non-planewave propagation,
and temporally, due to target motion. This paper addresses
non-planewave propagation with near-field beamforming and
considers target dynamics in the limited snapshot case. Near-
field sources in the presence of far-field interference occurs
in microphone array processing for speech, guidance sys-
tems for homing, and passive sonar. Non-adaptive solutions
have focused on weight designs that jointly consider near-
field and far-field beampatterns [1]. Adaptive techniques have
been developed based on higher-order statistics, which require
additional snapshots over second-order methods [2]. This paper
addresses interference suppression by exploiting the wide
sense stationarity of the interference while using near-field
steering vectors. Additionally due to the limited number of
snapshots, a variation of dominate mode rejection is proposed,
which assumes an interference dominated environment [3].
This allows the suppression of more interferers than sensors
while mitigating the impact of snapshot deficiency.

Traditionally, rank-deficient adaptive beamforming im-
proves interference suppression when the number of snapshots
is less than the number of sensors but greater than the number
of discrete interferers. Typically, twice as many snapshots as
interferers are required when the sources are quasi-stationary
during the time window [4]. Unlike previous rank-deficient
approaches, this paper exploits a non-uniform array where
a filled uniform linear array at half-wavelength spacing has
been thinned; or equivalently, a given number of sensors are
placed non-uniformly at multiples of a half-wavelength. The
total degrees of freedom can be increased using a non-uniform

array by forming a covariance matrix corresponding to the
difference co-array when the observed field is spatially wide
sense stationary [5]. This exploits the Toeplitz structure of
an augmented received data covariance matrix. Augmentable
arrays have been used to maximize array aperture given a
limited number of sensors. Minimally redundant linear arrays
(MRLA) are fully augmentable such that every multiple of
the smallest inter-element spacing, assumed to be at most
a half-wavelength, is observed up to the length of the full
aperture [6]. The problem considered is given in Figure 1
where an under-sampled array is used to null many far-field
interferers in the presence of a near-field source. Non-uniform
fully augmentable arrays can be processed as uniformly spaced
arrays. The number of times each inter-element spacing is
observed forms the co-array, which has no zeros or holes
in a fully augmentable array. Other types of arrays, such as
co-prime arrays, have recently been considered since designs
for MRLAs with a large number of sensors are unknown and
require computationally intensive searches [7]. Augmentable
arrays can detect and resolve more sources than the number
of sensors (see [8] and references therein). Conventional
augmentation techniques for MRLAs have been well studied
and require approximately twice the number of snapshots
to achieve spectrum estimation performance comparable to
non-augmented methods [5]. A rank-deficient beamformer is
proposed to reduce the number of snapshots required in order
to mitigate the impact of augmentation.

Far- eld Interferers

Near- eld Target

Filled Linear Array

Fully Augmentable Array

Fig. 1. Example scenario of near-field target in far-field interference

The rest of the paper is organized as follows. The signal
model of the received data is described in Section II, and the
proposed adaptive beamformer is derived in Section III. The
results of array gain analysis are given in Section IV. Monte
Carlo simulation with more sources than sensors is given in
Section V to demonstrate traditional dominate mode rejection
processing compared to the augmented approach with a near-
field target in an interference dominate environment.
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II. RECEIVED SIGNAL MODEL

Consider a linear passive array of M sensors with dis-
tances, dm, and first element located at d1 = 0. For passive
array processing, narrowband data received by the array,
x, is a summation of the interference, signal and noise,
x = AIsI + νa(θs, rs) + n where the interference steer-
ing vectors, [a(θq)]m = exp(−jkdm cos(θq)), define AI =
[a(θ1) · · · a(θQ)] for wavenumber k. The near-field target
source steering vector is a function of bearing and range
respectively, a(θs, rs), from the first element as defined in (1),
and the target source is circularly symmetric complex normally
distributed ν ∼ CN (0, σ2

s). Signal amplitude as a function of
range for near-field propagation is not considered, resulting in
the phase only steering vector given by

[a(θ, r)]m = exp
(

−jk
(

d2m + r2 − 2dmr cos(θ)
)

1

2

)

. (1)

The interference is distributed according to sI ∼ CN (0,Σ),
where interferers are assumed uncorrelated such that Σ is
a diagonal matrix. The noise is assumed to be wide sense
stationary distributed according to n ∼ CN (0,Q), where Q is
unknown. The noise covariance is not assumed to be diagonal,
but the interference is assumed to dominate the noise. The
received data is distributed according to x ∼ CN (0,R) where

R = AIΣAH
I + σ2

sa(θs, rs)a
H(θs, rs) +Q. (2)

III. AUGMENTED ADAPTIVE BEAMFORMING

The objective of this paper is to enhance signal to in-
terference and noise gain for a near-field source in the
presence of far-field interferers. Note that near-field sources
may change bearing or range quickly, especially at close
ranges, and severely limit the number of snapshots available.
The received data covariance matrix estimate is given by

R̂ = 1

L

∑L

l=1
x(l)x(l), using L i.i.d. snapshots. Assuming

wide sense stationarity, the autocorrelation is a function of the
relative distance between sensors, which results in a Toeplitz
covariance matrix where each diagonal is a constant term [5].
Additionally, all inter-element spacings are assumed to be a
half-wavelength, such that d = λ/2. An augmented covariance
matrix is formed by averaging over each observation of the
relative distance, dτ , given by

Tτ =

∑M

a,b=1
[R̂]abδ(dτ, da − db)

∑M

a,b=1
δ(dτ, da − db)

, (3)

where Tτ refers to the τ th diagonal of T δ(a, b) is the
Kronecker delta function, and da, db are used to index different
sensor locations, dm. Let the non-negative contiguous τ ’s be
indexed from 0 to Mα, which is assumed to be greater than the
number of sensors, M . The increased size of the covariance
matrix results in increased variance, on the order of twice the
variance for conventional non-adaptive beamforming [5]. Note
that augmented covariances formed using the direct approach
of (3) may have negative eigenvalues, but positive definite
matrix completion can be used to ensures all eigenvalues are
positive [9].

In order to mitigate the increased variance from covariance
matrix augmentation and the limited number of snapshots, a
form of dominate mode rejection is proposed. The method
and analysis given by Cox [4] is extended to the augmented

domain. Eigendecomposition of the augmented covariance
matrix is given by

T =
K
∑

n=1

λnunu
H
n +

Mα
∑

n=K+1

λnunu
H
n (4)

where the subspace of the K strongest interferers is approxi-
mated by the first term of (4). The estimate of the interference
subspace with additive white Gaussian noise is given by

T̃ =
∑K

m=1
λmumuH

m + εI. Additive white noise, ε, provides
robustness to steering vector errors as a regularization term.
The inverse of the interference subspace with noise is given

by P = T̃−1 such that

P = ε−1

(

I−
K
∑

n=1

λn

λn + ε
unu

H
n

)

(5)

where the modified eigenvalues are λ̃n = λn

λn+ε
. The inverse

of the dominate subspace is used to null the K strongest
sources. However, augmentation is inappropriate for near-field
steering; therefore, a modified steering vector is proposed as
as = Jaα(θ, r), where aα(θ, r) is an augmented steering
vector of the form from (1) except dm = m∗d ∀ m ∈ [1,Mα],
and J is a square selection matrix with ones on the diagonal
locations where sensors exist and zeros elsewhere. The analytic

form of the selection matrix is J =
∑M

m=1
eτmeT

τm
where eτ

is a Mα×1 unit vector with a one at the τ th element and zeros
elsewhere and τm = dm/(λ/2) + 1 . The minimum variance
distortionless response (MVDR) beamforming weights using
the estimated interference covariance matrix, (5), and modified
steering vector are given by

w =
Pas

aH
sPas

(6)

where the denominator provides a unity gain constraint. The
weights are applied to the augmented covariance matrix with
beamformer power output given by y = wHTw. Note that the
augmentation operation, (3), causes signal loss for a near-field
target. However, the unobserved steering vector elements are
ignored via the selection matrix, J, to reduce mismatch. The
signal loss will be quantified through array gain analysis.

IV. ARRAY GAIN PERFORMANCE

The metric of interest for quiet source detection in an in-
terference dominated environment is the signal to interference
plus noise ratio (SINR). Array gain is the ratio of SINR at the
output of a beamforming method compared to the SINR of data
received by a single sensor, given by A = SINRout/SINRin,
assumed to be constant for all sensors. First, array gain without
diagonal loading is considered. Note this is not equivalent to

setting ε = 0 in (5) but using P = I−
∑K

n=1
unu

H
n. Second,

array gain with diagonal loading, as in (5), is considered. For
the purpose of this work, the true target steering vector and
size of the interference subspace are assumed to be known.
Due to limited space, the following results are given without
derivations assuming Q = σ2

wI.

A. No Diagonal Loading

The augmented signal covariance is given by Ts using
(2)-(3) assuming Σ,Q = 0 of sizes Q × Q and M × M
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respectively. Assuming no steering mismatch, i.e. as and
a(θs, rs) are equal for all non-zero terms, the signal output
is

wHTsw =
M2β(1− ρ)σ2

s

|aH
sPas|2

(7)

where the loss due to augmentation is given by

β =
aH
sTsas

aH
sRsas

, (8)

and the nulls in the steering direction are function of the inner
product of the modified steering vector with a combination of
signal and interference subspaces as expressed by

ρ = M−2(σ2
sβ)

−1aH
s

[

2R
{

K
∑

n=1

unu
H
nTs

}

−

(

K
∑

n=1

unu
H
n

)

Ts

K
∑

n=1

unu
H
n

]

as.

The augmented interference and noise covariance matrices are
formed using (2)-(3) assuming σ2

s = 0. Eigenvector decom-
position is assumed to separate the interference and noise
subspace such the largest K eigenvalues and corresponding
eigenspace of the interference subspace while the smallest
Mα −K eigenvalues correspond to the eigenvectors spanning
the noise subspace. The power output of the interference plus
noise is written as

wH(TI +Tw)w =

∑Mα

n=K+1
λn|aH

sun|2

(aH
sPas)2

. (9)

The total input interference and noise is defined as σ2
w +

∑K

n=1
σ2
n, the diagonal Q and trace of Σ respectively. Thus

the array gain is given by

A =
M2β(1− ρ)

(

σ2
w +

∑K

n=1
σ2
n

)

∑Mα

n=K+1
λn|aH

sun|2
. (10)

Note that array gain increases with the number of interferers,
K, when the interferers are outside of the near-field steered
location; however, the number of interferers is limited by Mα

instead of M . In this case where the number of interferers is
larger than the number of sensors, large gains are possible due
to the increasing denominator and decreasing numerator.

B. With Diagonal Loading

Consider the case with diagonal loading as shown in (5).
In the same fashion as the previous section, the beamformer
power output of the signal is given by

wHTsw =
M2β(1− ρ̃)σ2

s

ε2|aH
sPas|2

(11)

where the modified loss factor due to the inner product of the
signal in the interference space is given by

ρ̃ = M−2(σ2
sβ)

−1aH
s

[

2R
{

K
∑

n=1

λ̃nunu
H
nTs

}

−

(

K
∑

n=1

λ̃nunu
H
n

)

Ts

K
∑

n=1

λ̃nunu
H
n

]

as

and the interference output is given by

wHTIw =

∑K

n=1
λn(1− λ̃n)

2|aH
sun|

2

ε2|aH
sPas|2

. (12)

The array gain using (11)-(12) is given by

A =
M2β(1− ρ̃)

(

σ2
w +

∑K

n=1
σ2
n

)

∑K

n=1
λn(1− λ̃n)2|aH

sun|2 +
∑Mα

n=K+1
λn|aH

sun|2

(13)
where the effect of diagonal loading on array gain is predom-
inantly shown by the first term on the denominator. Diago-
nal loading trades interference suppression for gain against
white noise; thus the interference will not be perfectly nulled.
Consideration of mismatched steering vectors and imperfect
subspace knowledge is left for future work.

V. SIMULATION RESULTS

An interference dominated environment is simulated to
demonstrate the performance of the proposed beamforming
method. Consider a MRLA with 20 elements and total length
of 125 half-wavelength spacings (see [10]). The first environ-
ment considered is two far-field interferers at 50◦ and 150◦

from endfire. The interference to noise ratio, [Σ]q,q/σ
2
w, is

assumed to be 20dB for each interferer where Q = σ2
wI. The

source is located at 110◦ with range of 100 wavelengths from
the first element of the array, which is a distance of less than
twice the array length. The signal to noise ratio, σ2

s/σ
2
w, is

3 dB. Beamforming is performed assuming infinite snapshots;
sensitivity to snapshot deficiency is studied below in terms
of array gain. The resulting beamformer power is shown in
Figure 2a with weights steered to a range of 100 wavelengths.
Conventional delay and sum beamforming with the MRLA has
incorrectly high levels at all angles, but a filled array with an
additional 106 elements is able resolve the 3 sources due to
the increased array gain. Note the large plateaus in the filled
array where the far-field interference leaks into the near-field
beamformer output. The rank-reduced MVDR techniques are
referred to as 2 Stage methods, each assuming K = 2. For
comparison, weights given by Cox [4] are labeled with R to
denote the operation in the received data space. The weights
proposed in (6) are labeled with T to denote operation in the
augmented data space. Both of the reduced rank approaches
suppress the far-field interferers using the MRLA. A diagonal
loading factor of ε = 1 equal to the noise, ε = σ2

w, is used for
all results.

The interference is increased to 30 sources at bearings
uniformly (stochastically) distributed in bearing over 180◦.
Thus the total INR in this case is 20dB×30 = 34.8dB, which
is much larger than the maximum array gain of conventional
beamforming with 126 elements. The outputs are shown in
Figure 2b, where a conventional MRLA and filled array fail
to show the target. Since the number of interferers exceeds
the number of sensors, the adaptive R based method also
fails. However, the number of augmented degrees of freedom
is larger than the number of interferences, and the proposed
technique using T shows the target peak at 110◦.

Array gain as a function of snapshots is evaluated using
a Monte Carlo simulation in an interference dominated envi-
ronment. The target range of 100 wavelengths is held constant
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(a) Beamformer output with two far-field interferers
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(b) Beamformer output with 30 far-field interferers

Fig. 2. Simulation results for loud far-field interference with a weak near-field
target

as well as INR and SNR levels, but the target and interferer
bearings are uniformly distributed over 180◦. Array gain as
a function of number of snapshots is numerically computed
using simulated data and evaluated using the definition given
by

A =
wHTsw

wH(TI +Tw)w

σ2
w +

∑K

n=1
σ2
n

σ2
s

. (14)

where the weights are calculated using L snapshots and (3)–
(6). The ideal covariance matrices, T, are formed assum-
ing infinite snapshots. Using 1000 realizations, the random
variables are target/interference bearings, target/interference
signals and additive white noise. Array gain is shown for the
adaptive methods in Figure 3, where the thick lines denote
the mean values with thin surrounding lines denoting the
25% and 75% quantiles. The proposed method, using the
augmented covariance matrix, consistently outperforms the
non-augmented approach. Due to the additional degrees of
freedom, the augmented approach continues to increase with
additional snapshots. Note that the augmented approach has
higher array gain in the low snapshot region. The rule of thumb
provided by Cox is met when the number of snapshots is at
least twice the number of interferers [4], which corresponds
to 60 snapshots. This results in average array gain increase
of 4.4dB using the augmented approach but can be increased
with more snapshots unlike previous approaches.
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Fig. 3. Monte Carlo simulation of array gain with mean and 25%-75%
quantiles in interference dominated environment and near-field source

VI. CONCLUSION

Fully augmentable arrays can null more interferers than
the number of sensors, which can be used to suppress far-
field interferences. A method was introduced to exploit the
increased degrees of freedom while reducing snapshot depen-
dency. Additionally, quiet near-field targets were considered
and the resulting beamforming technique allows for increased
array gain in interference dominated environments.
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