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Abstract—The frequency of a three-phase power system can 

be estimated from the parameters of a widely-linear predictive 

model for the complex-valued    signal of the system. Using the 

total least-squares (TLS) method, it is possible to estimate the 

model parameters while compensating for error in both input 

and output of the model when the voltage readings of the three 

phases are contaminated with noise. In this paper, we utilize the 

inverse power method to find a TLS estimate of the parameters 

of the assumed widely-linear predictive model in an adaptive 

fashion. Simulation results show that the resultant algorithm, 

called augmented inverse power iterations (AIPI), outperforms 

the recently proposed augmented complex Kalman filter (ACKF) 

and augmented complex extended Kalman filter (ACEKF) 

algorithms in estimating the frequency of the three-phase power 

systems. Unlike ACKF and ACEKF, AIPI requires no parameter 

tuning or prior knowledge of the noise variances. Computational 

complexity of AIPI is also similar to those of ACKF and ACEKF. 

Keywords—adaptive frequency estimation; inverse power 

iterations; smart grids; total least-squares; widely-linear modeling 

I. INTRODUCTION 

Smart grids enhance the efficiency, reliability, economy, 

and sustainability of the generation, distribution, and 

consumption of electricity by collecting and acting on 

information regarding the behavior of the consumers and 

suppliers in an automated manner. 

System frequency is a vital and sensitive parameter that 

needs to be continually monitored in the smart grids. To check 

the health of the power grids and assure reliable measurement 

of other system parameters such as voltages, currents, and 

active and reactive powers, accurate power frequency 

estimation is essential. With the drive of market economy, 

power systems of future will have to operate much closer to 

their limits and sustain a perfect balance between generation 

and load. Deviation of the system frequency from its nominal 

value consistently represents an imbalance between power 

generation and load demand. Accordingly, many power-system 

protection-and-control applications require accurate and fast 

estimation of the system frequency. An erroneous frequency 

estimate can result in inadequate load shedding by frequency 

relays, which in turn may eventually cause a catastrophic grid 

failure [1]. 

Frequency estimation of power systems has been 

investigated for decades generating an ample body of 

literature, e.g., [2]-[12] and the references therein. Several 

proposed methods are based on zero-crossing technique [3], 

phase-locked loop [4], least-squares estimation [5], and 

extended Kalman filter [6]. Most of these methods use the 

voltage readings of a single phase of the system. In three-phase 

systems, none of the phases can faithfully characterize the 

whole system and its properties. Therefore, a robust frequency 

estimator should take into account the information of all three 

phases [7]-[9]. 

Clark’s transform (also known as    transform) gives a 

single complex-valued signal that can represent a three-phase 

system [10]. The frequency of a three-phase power system can 

be estimated assuming a linear predictive model for its 

complex-valued    signal [11], [12]. However, when the 

system is unbalanced, for example because of having different 

phase peak voltages in the aftermath of a voltage sag, the    

signal is non-circular (improper) and its real and imaginary 

parts have different statistical properties [13], [14]. In such 

cases, the    signal is better described by a widely-linear 

predictive model rather than a strictly-linear one [15]. 

In [12], an algorithm for frequency estimation of three-

phase power systems utilizing the    signal is developed 

based on the widely-linear (augmented) complex least mean 

square (ACLMS) algorithm [16]. In unbalanced situations, this 

algorithm significantly outperforms its strictly-linear 

counterpart proposed in [11], which is based on the complex 

least mean square (CLMS) algorithm [17], while retaining the 

simplicity and numerical stability of the LMS-type algorithms. 

However, it assumes a noise-free environment, i.e., where the 

voltage measurements are exact and error-free. This 

assumption is often unrealistic since several kinds of error can 

corrupt the measurements, e.g., sampling, quantization, and 

instrument errors. 

In [18], the widely-linear (augmented) complex-valued 

Kalman filter (ACKF) and the widely-linear (augmented) 

complex-valued extended Kalman filter (ACEKF) algorithms 

[19] are employed to estimate frequency of three-phase power 

systems when the voltage readings are contaminated with 

noise. These algorithms perform considerably better that the 
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ACLMS algorithm. However, they require careful tuning of 

the covariance matrices of state and observation noises. In 

practice, such a tuning is not straightforward and can only be 

realized effectively if the variances of the measurement noises 

are known a priori. 

Total least-squares (TLS) is a fitting method that improves 

accuracy of the least-squares estimation techniques when both 

the input and output data of a linear system are subject to 

observational error. TLS finds an estimate for the system 

parameters that fits the input to the output with minimum 

perturbation in the data [20]. 

In this paper, we utilize the TLS concept together with a 

widely-linear predictive model for the    signal to estimate the 

frequency of a three-phase power system from its noisy phase 

voltage observations. To find the TLS estimate of the model 

parameters, we employ the inverse power method [21]. The 

system frequency is then calculated adaptively using the 

parameter estimates. Simulation results testify that the new 

algorithm is superior to the ACKF and ACEKF algorithms in 

estimating the frequency of three-phase power systems without 

requiring any prior knowledge about the noises or any 

parameter tuning. 

II. ALGORITHM 

The phase voltages of a three-phase power system can be 

expressed as 
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Let us consider the complex-valued voltage signal 
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This signal can be used to estimate the system frequency [22]. 

A widely-linear predictive model for    is formulated as 
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where  ̃  is the noiseless version of   , i.e., without taking into 

account   
 ,   

 , and   
 . In addition,   and     are the model 

parameters that we wish to identify and superscript   stands for 

complex conjugate. It is shown in [12] that, from   and  , the 

system frequency can be estimated as 
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where  ( ) and | | denote the imaginary part and the absolute 

value, respectively. 

In order to identify   and   at the presence of noise, we 

utilize an adaptive filter whose tap-weights vector, denoted by 

   [         ]
 
     , is taken as an estimate of [   ]  

at iteration  . In the context of total least-squares (TLS) 

estimation,    is computed such that it fits the filter input data 

to the filter output data by incurring minimum perturbation in 

the data, i.e., it holds that 
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and     
    and     

    are the minimum input and 

output perturbations, respectively. Using the singular value 

decomposition (SVD) of the augmented data matrix, [     ], 
the TLS solution for    is given by [23] 
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 is the right singular vector 

corresponding to the smallest singular value of [     ] or the 

eigenvector corresponding to the smallest eigenvalue of 
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An estimate of    can be adaptively found by executing an 

iteration of the inverse power method [21] at each time instant: 
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The matrix    may be recursively updated as 
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Applying the matrix inversion lemma [21] to (2) yields 
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Dividing both sides of (1) by         gives 
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TABLE I 

FREQUENCY ESTIMATION USING THE AIPI ALGORITHM 

Initialization: 

        
        ,     is a small number and    is the     identity matrix 
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At each iteration        : 
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we will have 
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Accordingly, the system frequency is adaptively estimated as 
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We call the resultant algorithm augmented inverse power 

iterations (AIPI) and summarize it in Table I. We also present 

the computational complexity of frequency estimation using 

this algorithm and the ACKF and ACEKF algorithms of [18] 

in Table II. 

III. SIMULATIONS 

We consider a three-phase power system where      Hz, 

    ms, and the noises (  
 ,   

 , and   
 ) are zero-mean white 

Gaussian with variance   
 . In Fig. 1, we depict the learning 

curves, i.e.,  [ ̂ ]  versus time, for the AIPI, ACKF, and 

ACEKF algorithms when   
       and  ̂   . In Figs. 2 

and 3, we plot the steady-state bias and mean-square error, 

defined as | [ ̂ ]   | and  [( ̂   )
2], respectively, against 

  
 . We evaluate the expectations by taking the ensemble 

average over     independent trials and the steady-state values 

by averaging over last     of        iterations. We also 

adjust the noise covariance matrices of the ACKF and ACEKF 

algorithms to achieve their best performance at each scenario. 

In Fig. 1, the system is balanced. In Fig. 2, it has experienced a 

Type-C voltage sag where there is     voltage drop and       
phase offset in phases a and b with respect to the balanced 

state. In Fig. 3, a short-circuit between phase a and the ground, 

resulting in   
   , has made the system highly unbalanced. 

Figs. 2 and 3 show that the AIPI algorithm outperforms the 

ACKF and ACEKF algorithms. Moreover, the increase in 

unbalancedness of the system, i.e., non-circularity of   , 

widens the performance gap between the AIPI algorithm and 

the Kalman-filter-based ones. 

TABLE II 

COMPUTATIONAL COMPLEXITY OF FREQUENCY ESTIMATION USING THE AIPI, 

ACKF, AND ACEKF ALGORITHMS IN TERMS OF NUMBER OF REQUIRED 

ARITHMETIC OPERATIONS PER ITERATION 

       √        

AIPI             

ACKF             

ACEKF             

 
Fig. 1.  The learning curves of different algorithms when the system is 

balanced and   
      . 

IV. CONCLUSION 

We have developed an adaptive frequency estimation 

algorithm for three-phase power systems by assuming a 

widely-linear predictive model for the system’s    complex-

valued signal and finding a recursive total least-squares 

estimate for the model parameters via the inverse power 

method. As verified by the simulation results, the proposed 

algorithm outperforms the augmented complex Kalman filter 

(ACKF) and the augmented complex extended Kalman filter 

(ACEKF) in frequency estimation of the unbalanced three-

phase power systems while having similar computational 

complexity. The proposed algorithm also precludes the 

inconvenience of adjusting the noise covariance matrices 

encountered in the Kalman-filter-based algorithms. 
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