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Abstract—We introduce in this paper the fully distributed, Rao-
Blackwellized Random Exchange Diffusion Particle Filter (RB
ReDif-PF) to track a moving emitter using multiple received-
signal-strength (RSS) sensors with unknown noise variances. In
a simulated scenario with a partially connected network, the
proposed RB ReDif-PF outperformed a suboptimal tracker that
assimilates local neighboring measurements only. Compared to a
broadcast-based filter which exactly mimics the optimal central-
ized tracker, ReDif-PF showed a degradation in steady-state error
performance. However, compared to alternative fully distributed
consensus-based trackers in the literature, ReDif-PF is better
suited for real-time applications since it does not require iterative
inter-node communication between measurements arrivals.

Index Terms—Distributed Particle Filters, RSS Emitter Track-
ing, Diffusion, Wireless Sensor Networks

I. INTRODUCTION

In an agent-based network, multiple agents at different
locations equipped with sensing, processing and communication
capabilities of their own cooperate to execute an estimation task
without relying on a global data fusion center. Fully distributed
versions of the Kalman filter have been proposed e.g. in [1],
[2], [3] to track unknown state vectors in linear, Gaussian state-
space models. On the other hand, several distributed particle
filters (PFs) [4] have been proposed e.g. in [5], [6], [7], [8],
[9] to handle nonlinear distributed estimation tasks in which
Kalman filters are no longer optimal.

Assuming conditional independence of the different sensor
observations given the state vector, the distributed PF requires
the computation of a product of likelihood functions that depend
on local data only [10]. Previous works in the literature suggest
approximating that product using iterative average consensus
[10] or selective gossip algorithms [11]. Alternatively, the
likelihood product can be computed exactly in a finite number
of iterations [9] using either iterative minimum consensus
[12] or flooding [13]. However, consensus or flooding-based
solutions require iterative inter-node communication between
two consecutive sensor measurements and, therefore, are not
well-suited for real-time processing.

To circumvent the limitations of the consensus-based trackers,
we introduced in [9] the new fully distributed Random Ex-
change Diffusion Particle Filter (ReDif-PF), which eliminates
the need for iterative inter-node communication between mea-
surements and basically uses random information dissemination

[1] to build at each network node different Monte Carlo
representations of the posterior distribution of the hidden
states conditioned on different random sets of measurements
coming from the entire network. In this paper, we use Rao-
Blackwellization [14] to extend the algorithm in [9] to a distinct
scenario where the sensor models have unknown parameters.
Specifically, we consider the problem of tracking a moving
emitter using multiple received-signal-strength (RSS) sensors
with unknown noise variance. A comprehensive discussion
regarding the advantages of considering sensor variances as
unknown parameters can be found in our long paper [8].

The paper is divided into 5 sections. Sec. I is this Introduction.
Sec. II describes the state and sensor models. Sec. III describes
the new Rao-Blackwellized ReDif-PF algorithm, whose per-
formance is evaluated in Sec. IV. Finally, we present our
conclusions in Sec. V.

II. EMITTER TRACKING USING MULTIPLE RSS SENSORS

Without loss of generality, we assume that the emitter tra-
jectory is described by the white noise acceleration model [15]

xn+1 = Fxn + wn (1)

where xn ,
[
xn ẋn yn ẏn

]T
is the hidden state vector

at time step n consisting of the positions and velocities of the
target’s centroid respectively in dimensions x and y, F is the
state transition matrix and {wn} is a sequence of independent,
identically distributed (i.i.d.) zero-mean Gaussian vectors with
covariance matrix Q. Matrices F and Q, parameterized by
the sampling period T and the acceleration noise σ2

accel, are
detailed in [8] and [15].

A. Observation Model

The measurements zr,0:n = {zr,0, . . . , zr,n} in dBm at the
r-th node of a network of R RSS sensors are modeled as [16]

zr,n = gr(xn) + vr,n (2)

where, conditioned on the unknown parameters
{
σ2
1 , . . . , σ

2
R

}
,

vr,n|σ2
r ∼ N (vr,n|0, σ2

r), ∀r, and {x0 , {wn} , {vr,n}} are
mutually independent for n ≥ 0 and r ∈ R , {1, . . . , R}. The
nonlinear function gr(·) in (2) is in turn given by

gr(x) = P0 − 10ηr log

(‖Hx− xr‖
d0

)
(3)
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where xr represents sensor position, ||.|| is the Euclidean norm,
(P0, d0, ηr) are known model parameters (see [16] for details)
and H is a 2 × 4 projection matrix such that H(1, 1) =
H(2, 3) = 1 and H(i, j) = 0 otherwise. We also denote by
Nr the set of nodes in the neighborhood of node r.

Using a Bayesian approach, we model the unknown noise
variances

{
σ2
r

}
, r ∈ R, as random variables that are mutually

independent for s 6= r and identically distributed a priori
as σ2

r ∼ IG(σ2
r |α, β) where IG denotes the inverse Gamma

distribution. The real-valued constants {α, β} are the model’s
hyper-parameters (see [8] for further details).

III. RANDOM EXCHANGE DIFFUSION PARTICLE FILTER

We derived in [8] the optimal centralized PF for the problem
stated in Sec. II and introduced both exact and approximate
decentralized implementations of that optimal solution using
either fully-distributed iterative consensus algorithms or broad-
cast algorithms. In this paper, we propose an alternative solution
to the same problem using a new Rao-Blackwellized version
of the suboptimal ReDif-PF algorithm previously introduced
in [9] in a simpler scenario with known noise variances. We
refer to that new algorithm as the RB ReDif-PF. We derive first
the exact RB ReDif-PF solution to the problem and propose
in the sequel an approximate version that further reduces the
inter-node communication cost.

ReDif-PF with Known Sensor Variances: Let Zs,0:n−1 denote
the set of all network measurements assimilated by node s up
to instant n− 1. Next, let

{
x
(q)
s,0:n−1

}
with associated weights{

w
(q)
s,n−1

}
, q ∈ Q , {1, · · · , Q}, be a properly weighted

set that represents the posterior p.d.f. p(x0:n−1|Zs,0:n−1) at
node s. Assume now that, at instant n− 1, node s sends its
particles, weights and hyper-parameters to a remote node r that
can assimilate at instant n the measurements Zr,n = {zt,n},
t ∈ Nr ∪ {r}. At instant n, the new particle set at node r,
x
(q)
r,0:n = (x

(q)
s,0:n−1,x

(q)
r,n) with updated weights w(q)

r,n such that

x(q)
r,n ∼ p(xn|x(q)

s,n−1) (4)

w(q)
r,n ∝ w

(q)
s,n−1 p(Zr,n|x

(q)
r,0:n,Zs,0:n−1) (5)

is now a properly weighted set, see also [9], to repre-
sent the updated posterior p(x0:n|Zr,n, Zs,0:n−1), where
{Zr,n, Zs,0:n−1} is redefined as Zr,0:n.

In order to build, at each instant n and at each node
r, different Monte Carlo representations of the posterior
distribution conditioned on different sets of observations
Zr,0:n coming from random locations in the entire network,
it suffices to implement a protocol where each node r,
starting from instant zero, exchanges its weighted particles{
x
(q)
r,n−1, w

(q)
r,n−1

}
, q ∈ Q, from time instant n − 1 with a

randomly chosen neighboring node s, propagates the received
particles

{
x
(q)
s,n−1, w

(q)
s,n−1

}
using the blind importance function

as in Eq. (4), and then updates their weights as in Eq. (5).
Unlike randomized gossip algorithms [17], this procedure dif-

fuses information by randomly propagating posterior statistics
across the network. More specifically, as the initial posterior

statistics provided by a given node r0 at time 0 follows a
path P , {r0, r1, . . . , rn} along the network, it assimilates
the available measurements Zr,n in the neighborhood of each
visited node r ∈ P . Since the initial posteriors at each node
follow different paths, the posterior available at node rn at
time n will be different from those in the remaining nodes.

A. Rao-Blackwellized ReDif-PF

In the scenario with unknown sensor variances, it can be
shown after long algebraic calculations similar to those in
Appendix B of the reference [8] that, if, at instant n− 1,

p(σ2
1:R|x(q)

s,0:n−1,Zs,0:n−1) =

R∏
i=1

IG(σ2
i |αs,i,n−1, β(q)

s,i,n−1)

then

p(Zr,n|x(q)
r,0:n,Zs,0:n−1) =

∏
t

p(zt,n|x(q)
r,0:n,Zs,0:n−1) (6)

where t ∈ Nr ∪ {r} and each factor in the product on the
right-hand side of (6) is computed independently by solving
the integral∫ ∞

0

p(zt,n|x(q)
r,n, σ

2
t )p(σ2

t |x(q)
s,0:n−1,Zs,0:n−1)dσ2

t

=

∫ ∞
0

N (zt,n|gt(x(q)
r,n), σ2

t )IG(σ2
t |αs,t,n−1, β(q)

s,t,n−1)dσ2
t

∝

[
β
(q)
s,t,n−1

]αs,t,n−1

Γ(αs,t,n−1)

Γ(αr,t,n)[
β
(q)
r,t,n

]αr,t,n
, (7)

where Γ(·) denotes the Gamma function and

αr,t,n = αs,t,n−1 +
1

2
(8)

β
(q)
r,t,n = β

(q)
s,t,n−1 +

1

2

[
zt,n − gt(x(q)r,n)

]2
, (9)

with gt(·) calculated as in (3). Thus, in this scenario, node r also
needs to exchange its hyper-parameters

{
αr,i,n−1, β

(q)
r,i,n−1

}
,

q ∈ Q and i ∈ R, with the chosen node s. Furthermore, at
node r and instant n, the updated parameter posterior p.d.f.

p(σ2
1:R|x(q)

r,0:n,Zr,0:n) =

R∏
i=1

IG(σ2
i |αr,i,n, β(q)

r,i,n) (10)

where αr,i,n and β
(q)
r,i,n are updated as in Eqs. (8) and (9) if

i ∈ Nr ∪ {r}, or, otherwise, are kept equal respectively to
αs,i,n−1 and β(q)

s,i,n−1.

B. Approximate RB ReDif-PF

To circumvent the inconvenience of having to transmit Q
particles and weights per node at each time step, we follow
the lead in [18] and build a Gaussian Mixture Model (GMM)
representation of the marginal posterior p(xn|Zs,0:n−1) of the
form

p(xn|Zs,0:n−1) ≈
∑
k∈K

η(k)s,nN (xn|µ(k)
s,n−1,Σ

(k)
s,n−1) (11)
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where the parameters η(k)s,n−1, µ(k)
s,n−1, and Σ

(k)
s,n−1 are obtained

from the weighted particle set
{
x
(q)
s,n−1, w

(q)
s,n−1

}
, q ∈ Q,

at node s using the Expectation-Maximization (EM) [19]
algorithm. Node s now transmits only the parameters of the
GMM model to node r. Then, node r locally resamples Q new
particles according to the distribution in (11) from the received
GMM parameters and resets its importance weights to 1/Q.

To further reduce the communication burden, we follow
the lead in [8], [20], [21], and, for each t ∈ R, approximate
the marginal posteriors p(σ2

t |x(q)
0:n−1,Zs,0:n−1) for all particle

labels q and all sequences x
(q)
0:n−1 by a new inverse Gamma

p.d.f. with parameters α̃s,t,n−1 and β̃s,t,n−1, independent
of q and chosen such that the approximated distribution
IG(σ2

t |α̃s,t,n−1, β̃s,t,n−1) matches the first and second mo-
ments of

E
{
p(σ2

t |x0:n−1, Zs,0:n−1)
}
≈

Q∑
q=1

w
(q)
s,n−1IG(σ2

t |

αs,t,n−1, β
(q)
s,t,n−1) (12)

where the expectation in (12) is taken over all realizations of
x0:n−1 conditioned on Zs,0:n−1. For all q, we then replace
αs,t,n−1 and β

(q)
s,t,n−1 in Eqs. (8) and (9) with α̃s,t,n−1 and

β̃s,t,n−1 respectively, such that it suffices for node s to transmit
just 2R hyper-parameters to node r as opposed to R× (Q+ 1)
where Q is the number of particles.

IV. SIMULATION RESULTS

We assessed the performance of the proposed filter using
100 Monte Carlo runs with simulated data. As a performance
benchmark, we used the DcPF algorithm from [21], which
is a broadcast-based algorithm that reproduces exactly the
optimal centralized filter. The simulated scenario has R = 25
RSS sensors with parameters P0 = 1dBm, d0 = 1m, ηr =
3 and σ2

r independently sampled at each node according to
an IG distribution with mean 16. The nodes were deployed
on a jittered grid within a square of size 100m × 100m. In
contrast with the DcPF algorithm, ReDif-PF assumes a partially
connected network in which each node communicates with
other nodes within a range of 40m.

Fig. 1 shows the sensor positions and one realization of the
emitter trajectory generated for T = 1s, σaccel = 0.05m/s2

and x0 =
[
25m 0.5m/s 35m 0.5m/s

]T
. It also presents

the available network connections. The network diameter of the
evaluated scenario is D = 5 hops and the minimum number
of neighbors for any possible node is three.

All filters used Q = 500 particles. Particles were initial-
ized considering Gaussian priors with mean

[
x0 y0

]T
and

covariance matrix diag(202, 202) for the emitter’s position and
mean

[√
ẋ20 + ẏ20 arctan (ẏ0/ẋ0)

]T
and covariance matrix

diag(0.32, (5π/180)2) for the emitter’s velocity.
Fig. 2 shows the evolution of the root-mean-square (RMS)

error norm – averaged over all network nodes and Monte Carlo
runs – of the emitter position estimates for the DcPF and
ReDif-PF algorithms. It also presents the RMS error norm
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Fig. 1. Evaluated scenario.

for the isolated nodes and for a local cooperation scheme. In
the former, each node runs a regularized PF tracker, see [8],
which assimilates local measurements only, while in the latter,
a node r incorporates all measurements Zr,n in its vicinity
in the same way as in the ReDif-PF tracker, but it does not
exchange its updated posterior with its neighbors. The bars
shown in Fig. 2 represent the standard deviation of the error
norm across all nodes in the network. There are no bars for the
DcPF algorithm since it provides the same state estimate at all
nodes. The RMS error norm at time step 0 for all algorithms
was calculated after the measurements z1:R,0 were assimilated.

As theoretically expected, the ReDif-PF tracker has a
performance degradation compared to DcPF since the pos-
terior at each node assimilates just a subset of the available
measurements z1:R,n in the whole network at each time step
n. However, the ReDif-PF offers an improvement in error
performance compared to the local cooperation scheme by
better diffusing the information across the network. We also
note from Fig. 2 that the standard deviation of the state estimate
across the different network nodes is much lower in the ReDif-
PF algorithm than in the local cooperation scheme. The ReDif-
PF tracker was evaluated with GMM posterior approximations
using just one Gaussian mode. Finally, as shown by Fig. 2,
isolated nodes were not able to properly track the emitter in
the evaluated scenario.

Considering a four-byte and a one-byte network representa-
tion respectively for real and Boolean values, the total amount
of bytes transmitted and received by all nodes over the network
was recorded while running each tracker. Table I summarizes
the communication cost for each algorithm in our particular
simulation in terms of average transmission (TX) and average
reception (RX) rates per node and also quantifies the processing
cost for each algorithm in terms of average duty cycle per
node, measured in a Intel Core i5 machine with 4GB RAM.
The duty cycle of a given node is defined as the ratio between
the total node processing time and the simulation period 100s.

As expected, the ReDif-PF has a communication cost that is
one order of magnitude lower than the DcPF’s communication
requirements at the expense of an increase in processing
cost. Furthermore, by comparing the duty cycle of the local
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TABLE I
AVERAGE COMMUNICATION AND PROCESSING COST PER NODE

RX Rate TX Rate Duty Cycle
DcPF 46.89KB/s 1.95KB/s 35.8%

ReDif-PF 525.2B/s 515.7B/s 7.9%
Local Cooperation 4B/s 19.8B/s 9.3%

Isolated Nodes – – 2.0%

cooperation scheme and ReDif-PF, we conclude that the
regularization step employed by the former to avoid particle
degeneration (refer to [8]) is slightly more expensive than
computing the GMM and the IG approximations used by the
latter.

V. CONCLUSIONS

We introduced in this paper a Rao-Blackwellized version of
the Random Exchange Diffusion Particle Filter, which enables
fully distributed tracking of hidden state vectors in cooperative
sensor networks with unknown sensor parameters. In particular,
we specified the algorithm in an application where we track
a moving emitter using multiple RSS sensors with unknown
noise variances. The ReDif-PF tracker, introduced originally
in a simpler version in [9], is based on random information
dissemination and is well suited for real-time applications since,
unlike consensus-based approaches, it does not require iterative
inter-node communication between measurement arrivals.

The new Rao-Blackwellized version of the ReDif-PF was
compared in this paper to an exact broadcast implementation
of the optimal centralized PF solution to the problem under
investigation, referred to as the DcPF algorithm. As expected,
due to its sub-optimality, the ReDif-PF tracker showed a
degradation in RMS error performance compared to DcPF
in our simulations, but required much lower communication
bandwidth than the fully connected broadcast-based algorithm.

The ReDif-PF algorithm RMS error performance was also
compared to a local cooperation scheme in which each node
assimilates all available measurements in its neighborhood, but
does not exchange its posterior statistics with other nodes. By
diffusing information over the network, the ReDif-PF tracker
showed better error performance than the local cooperation
scheme that uses local information only. Additionally, the
standard deviation of the error norm considering all nodes in

the network is much lower for ReDif-PF than in the local
cooperation scheme. As future work, we plan to carry out a
theoretical analysis of how efficiently the ReDif-PF algorithm
disseminates information across the network.
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