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ABSTRACT

This paper presents a low-complexity robust data-dependent

dimensionality reduction based on a modified joint iterative op-

timization (MJIO) algorithm for reduced-rank beamforming and

steering vector estimation. The proposed robust optimization pro-

cedure jointly adjusts the parameters of a rank-reduction matrix

and an adaptive beamformer. The optimized rank-reduction ma-

trix projects the received signal vector onto a subspace with lower

dimension. The beamformer/steering vector optimization is then

performed in a reduced-dimension subspace. We devise efficient

stochastic gradient and recursive least-squares algorithms for im-

plementing the proposed robust MJIO design. The proposed robust

MJIO beamforming algorithms result in a faster convergence speed

and an improved performance. Simulation results show that the

proposed MJIO algorithms outperform some existing full-rank and

reduced-rank algorithms with a comparable complexity.

1. INTRODUCTION

Adaptive beamforming algorithms often encounter problems when

they operate in dynamic environments with large sensor arrays.

These include snapshot deficiency, steering vector mismatches

caused by calibration and pointing errors, and a high computational

complexity. In terms of complexity, an expensive inverse operation

of the covariance matrix of the received data is often required, result-

ing in a high computational complexity that may prevent the use of

adaptive beamforming in important applications like sonar and radar.

In order to overcome this computational complexity issue, adaptive

versions of the linearly constrained beamforming algorithms such as

minimum variance distortionless response (MVDR) with stochas-

tic gradient and recursive least squares [1] have been extensively

reported. These adaptive algorithms estimate the data covariance

matrix iteratively and the complexity is reduced by recursively com-

puting the weights. However, in a dynamic environment with large

sensor arrays such as those found in radar and sonar applications,

adaptive beamformers with a large number of array elements may

fail in tracking signals embedded in strong interference and noise.

The convergence speed and tracking properties of adaptive beam-

formers depend on the size of the sensor array and the eigen-spread

of the received covariance matrix [1]. Regarding the steering vector

mismatches often found in practical applications of beamforming,

they are responsible for a significant performance degradation of

algorithms. Prior work on robust beamforming design [2, 3, 4] has

considered different strategies to mitigate the effects of these mis-

matches. An effective method to deal with mismatches is the Robust
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Capon Beamforming (RCB) technique of [2]. A key limitation of

[2] and other robust techniques [3, 4] is their high cost for large

sensor arrays and their suitability to dynamic environments.

Reduced-rank signal processing techniques [4]-[11] provide a

way to address some of the problems mentioned above. Reduced-

dimension methods are often needed to speed-up the convergence of

beamforming algorithms and reduce their computational complexity.

They are particularly useful in scenarios in which the interference

lies in a low-rank subspace and the number of degrees of freedom

required the mitigate the interference through beamforming is signif-

icantly lower than that available in the sensor array. In reduced-rank

schemes, a rank-reduction matrix is introduced to project the original

full-dimension received signal onto a lower dimension. The advan-

tage of reduced-rank methods lie in their superior convergence and

tracking performance achieved by exploiting the low-rank nature of

the signals. It offers a large reduction in the required number of train-

ing samples over full-rank methods [1]. Several reduced-rank strate-

gies for processing data collected from a large number of sensors

have been reported in the last few years, which include beamspace

methods [4], Krylov subspace techniques [8, 11], and methods based

on joint and iterative optimization of parameters [7, 9, 10].

Despite the improved convergence and tracking performance

achieved with Krylov methods [8, 11], they are relatively complex

and may suffer from numerical problems. On the other hand, the

joint optimization technique reported in [9] outperforms the Krylov-

based method with efficient adaptive implementations. However,

this algorithm suffers from the problem of rank one. In order to

address this problem, in this paper, we introduce a low-complexity

robust data-dependent dimensionality reduction based on a modi-

fied joint iterative optimization (MJIO) algorithm for reduced-rank

beamforming and steering vector estimation. The proposed MJIO

design strategy jointly optimizes the rank-reduction matrix and a

reduced-rank beamformer, which ensures that the rank-reduction

matrix has a desired rank. Another contribution of this work is the

introduction of a bank of perturbed steering vectors as candidate

array steering vectors around the true steering vector. The candidate

steering vectors are responsible for performing rank reduction and

the reduced-rank beamformer forms the beam in the direction of the

signal of interest (SoI). We devise efficient stochastic gradient(SG)

and recursive least-squares (RLS) algorithms for implementing

the proposed robust MJIO design. Simulation results show that

the proposed MJIO algorithms outperform existing full-rank and

reduced-rank algorithms with a comparable complexity.

This paper is organized as follows. The system model is de-

scribed in Section 2. The reduced-rank MVDR beamforming with

MJIO is formulated in Section 3. A robust version of MJIO is inves-

tigated in Section 4 and simulations are discussed in Section 5.
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2. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider a uniform linear array (ULA) with M sensor ele-

ments, which receive K narrowband signals where K ≤ M . The

DoAs of the K signals are θ0, . . . θK−1. The received vector x[i] ∈
C

M×1 at the i-th snapshot (time instant), can be modelled as

x[i] = A(θ)s[i] + n[i], i = 1, . . . , N (1)

where θ = [θ0, . . . , θK−1]
T ∈ R

K×1 convey the DoAs of the K
signal sources. A(θ) = [a(θ0), . . . ,a(θK−1)] ∈ C

M×K com-

prises K steering vectors which are given as

a(θk) = [1, e
−2πj ι

λc
cos(θk)

, . . . , e
−2πj(M−1) ι

λc
cos(θk)]T . (2)

where λc is the wavelength and ι is the inter-element distance of

the ULA. The K steering vectors a{θk} ∈ C
M×1 are assumed

to be linearly independent. The source data are modelled as s ∈
C

K×1 and n[i] ∈ C
M×1 is the noise vector, which is assumed to be

zero-mean, N is assumed to be the observation size and [i] denotes

the time instant. For full-rank processing, the adaptive beamformer

output for the SoI is written as

yk[i] = ω
H
k [i]x[i], (3)

where the beamformer ωk ∈ C
M×1 is derived according to a design

criterion. The optimal weight vector is obtained by maximizing the

signal-to-interference-plus-noise ratio (SINR) and

SINRopt =
ωH

optRkωopt

ωH
optRi+nωopt

, (4)

where Rk and Ri+n denote the SoI and interference-plus-noise co-

variance matrices, respectively. Full-rank beamformers usually suf-

fer from high complexity and low convergence speed. In the follow-

ing, we focus on the design of low-complexity reduced-dimension

beamforming algorithms.

3. DIMENSION REDUCTION WITH MODIFIED JIO

In this section we describe reduced-rank algorithms based on the

proposed MJIO design of beamformers. The scheme jointly op-

timizes a rank-reduction matrix and a reduced-rank beamformer

that operates at the output of the projection matrix. The bank of

adaptive beamformers in the front-end is responsible for perform-

ing dimensionality reduction, which is followed by a reduced-rank

beamformer which effectively forms the beam in the direction of

the SoI. This two-stage scheme allows the adaptation with differ-

ent update rates, which could lead to a significant reduction in the

computational complexity per update. Specifically, this complexity

reduction can be obtained as the dimensionality reduction performed

by the rank-reduction matrix could be updated less frequently than

the reduced-rank beamformer. The design criterion of the proposed

MVDR-MJIO beamformer is given by the optimization problem

min
ω,sd

ω
H
S

H
DRSDω,

subject to ω
H

D
∑

d=1

qds
H
d ad = 1,

(5)

where R is the covariance matrix obtained from sensors, vector qd

with dimension D × 1 is a zero vector except its d-th element been

one. The vector sd ∈ C
M×1 is the d-th column of the projection

matrix SD ∈ C
M×D . The vectors ad, d = 1 . . . D represent the as-

sumed steering vector and D−1 small perturbations of the assumed

steering vector. Each recursion updates a different column of SD .

An increased rank of SD is required for higher d, and the rank one

problem in [9] can be avoided. The constrained optimization prob-

lem in (5) can be solved by using the method of Lagrange multipliers

[2]. The Lagrangian of the MVDR-MJIO design is expressed by

f(ω, sd) = E
{∣

∣

∣ω
H

D
∑

d=1

qds
H
d x

∣

∣

∣

2}

+ λ
(

ω
H

D
∑

d=1

qds
H
d a− 1

)

.

(6)

3.1. Stochastic Gradient Adaptation

In this subsection, we present a low-complexity SG [1] adaptive

reduced-rank algorithm for efficient implementation of the MJIO al-

gorithm. By computing the instantaneous gradient terms of (6) with

respect to ω[i]∗ and sd[i]
∗, we obtain

ω[i+ 1] = ω[i]− µwPw[i]S
H
D [i]x[i]z∗[i], (7)

sd[i+ 1] = sd[i]− µsP s[i]x[i]z
∗[i]w∗

d[i], d = 1, . . . , D, (8)

where wd is the dth element of the reduced-rank beamformer ω[i]
and the projection matrices that enforce the constraints are

Pw[i] = ID − (aH
D [i]aD[i])−1

aD[i]aH
D [i], (9)

and

P s[i] = IM − (aH [i]a[i])−1
a[i]aH [i], (10)

the scalar z∗[i] = xH [i]SD[i]ω[i] = x̃H [i]ω and

aD[i] =

D
∑

d=1

qdsd[i]
H
a[i] ∈ C

D×1. (11)

is the estimated steering vector in reduced dimension. The calcula-

tion of P ω[i] requires a number of D2+D+1 complex multiplica-

tions, the computation of P s[i] and z[i] requires D2+DM+M+1
and DM + D complex multiplications, respectively. Therefore,

we can conclude that for each iteration, the SG adaptation requires

4MD + 4D2 + 3D +M + 6 complex multiplications.

3.2. Recursive Least Squares Adaptation

Here we derive an adaptive reduced-rank RLS [1] type algorithm for

efficient implementation of the MVDR-MJIO method. The reduced-

rank beamformer ω[i] is updated as follows:

ω[i] =
R−1

D [i]aD[i]

aH
D [i]R−1

D [i]aD[i]
, (12)

where

k̃[i+ 1] =
α−1R−1

D [i]x̃[i+ 1]

1 + α−1x̃H [i+ 1]R−1
D [i]x̃[i]

, (13)

R
−1
D [i+ 1] = α−1

R
−1
D [i]− α−1

k̃[i+ 1]x̃H [i+ 1]R−1
D [i], (14)

The columns sd[i] of the rank-reduction matrix are updated by

sd[i] =
R−1[i]ad[i]a

H
d [i]βd[i]

aH
d [i]R−1[i]ad[i]wd[i]

, d = 1, . . . , D, (15)

where βd[i] =
∑D

d=1 sd[i]wd[i]−
∑D

l=1,l 6=d
sl[i]wl[i] and

k[i+ 1] =
α−1R−1[i]x[i+ 1]

1 + α−1xH [i+ 1]R−1[i]x[i]
, (16)

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

50



R
−1[i+ 1] = α−1

R
−1[i]− α−1

k[i+ 1]xH [i+ 1]R−1[i], (17)

where 0 � α < 1 is the forgetting factor. The inverse of the co-

variance matrix R−1 is obtained recursively. Equation (17) is ini-

tialized by using an identity matrix R−1[0] = δI where δ is a pos-

itive constant. The computational complexity of the proposed adap-

tive reduced-rank RLS type MVDR-MJIO method requires 4M2 +
3D2 + 3D + 2 complex multiplications. The MVDR-MJIO algo-

rithm has a complexity significantly lower than a full-rank scheme if

a low rank (D � M ) is selected.

4. PROPOSED ROBUST CAPON MJIO BEAMFORMING

In this section, we present a robust beamforming method based on

the Robust Capon Beamforming (RCB) technique reported in [2]

and the MJIO detailed in the previous section for robust beamform-

ing applications with large sensor arrays. The proposed technique,

denoted Robust Capon Beamforming MJIO (RCB-MJIO), gathers

the robustness of the RCB approach [2] against uncertainties and the

low-complexity of MJIO techniques. Assuming that the DoA mis-

match is within a spherical uncertainty set, the proposed RCB-MJIO

technique solves the following optimization problem:

min
ad,sd

a
H
d S

H
DR

−1
SDad,

subject to

∥

∥

∥S
H
Dad − S

H
D ā

∥

∥

∥

2

= ε,
(18)

where ā is the assumed steering vector and ad is the updated steering

vector for each iteration. The constant ε is related to the radius of the

uncertainty sphere. The Lagrangian of the RCB-MJIO constrained

optimization problem is expressed by

fRCB(ad, sd) =

(

D
∑

d=1

qds
H
d ad

)H

R
−1
D

(

D
∑

d=1

qds
H
d ad

)

+

λRCB





∥

∥

∥

∥

∥

D
∑

d=1

qds
H
d ad −

D
∑

d=1

qds
H
d ā

∥

∥

∥

∥

∥

2

− ε



 ,

(19)

where R−1
D = SH

DR−1SD is the reduced rank covariance matrix.

From the above Lagrangian, we will devise efficient adaptive beam-

forming algorithms in what follows.

4.1. Stochastic Gradient Adaptation

We devise an SG adaptation strategy based on the alternating mini-

mization of the Lagrangian in (19), which yields

ãd[i+ 1] = ãd[i]− µa[i]ga[i],

sd[i+ 1] = sd[i]− µs[i]gs[i],
(20)

where µa[i] and µs[i] are the step-sizes of the SG algorithms, the

parameter vectors ga[i] and gs[i] are the partial derivatives of the

Lagrangian in (19) with respect to ã∗
d[i] and s∗

d[i], respectively. The

recursion for ga[i] is given by

ga[i] =

(

1

λ RCB[i]
S

H
D [i]R−1[i]SD[i] + ID

)−1

S
H
D [i]ãd[i], (21)

where

gs[i] = ad[i]ǎ
H
d [i]rd[i] + τd[i]ad[i]a

H
d [i]sd[i],

+ λRCB[i]αd[i]α
H
d [i]sd[i],

(22)

and

ãd =
D
∑

d=1

qds
H
d ad = S

H
Dad ∈ C

D×1, (23)

ǎd =
D
∑

l=1,l 6=d

qls
H
l al ∈ C

D×1. (24)

We denote αd ∈ C
M×1 as the difference between the updated steer-

ing vectors and the assumed one. The scalar τd is the d-th diagonal

element of R−1
D . The term rd denotes the d-th column vector of

R−1
D . The Lagrange multiplier obtained is expressed as

λRCB[i] = −
(

SD[i]Hαd[i]α
H
d [i]sd[i]

)†

R
−1
D [i]ãd[i]a

H
d [i]sd[i],

(25)

The proposed RCB-MJIO SG algorithm corresponds to (7)-(9) and

(20)-(25). The calculation of λRCB requires MD + D2 + 4M +
D complex multiplications, and the computation of ga[i] and gs[i]
needs D3+MD+D and 5M+D+2 multiplications, respectively.

4.2. Recursive Least Squares Adaptation

We derive an RLS version of the RCB-MJIO method. The steering

vector and the columns of rank-reduction matrix are updated as

ãd[i] =
[

ãd[i]−
(

ID + λRCB[i]R
−1
D [i]

)−1
ãd[i]

]

, (26)

sd = −
(

τd[i]ad[i]a
H
d [i] + λRCB[i]αd[i]α

H
d [i]

)−1

ad[i]ǎ
H
d [i]rd[i],

(27)

k̃[i+ 1] =
α−1R−1

D [i]x̃[i+ 1]

1 + α−1x̃H [i+ 1]R−1
D [i]x̃[i]

, (28)

R
−1
D [i+ 1] = α−1

R
−1
D [i]− α−1

k̃[i+ 1]x̃H [i+ 1]R−1
D [i], (29)

where (26)-(29) need 2D3 + 7D2 + 4D + 3 complex multiplica-

tions, and the projection operations need a complexity of MD com-

plex multiplications. It is obvious that the complexity is significantly

decreased if the selected rank D � M . The proposed RCB-MJIO

RLS algorithm employs (12) and (26)-(29). The key of the RCB-

MJIO RLS algorithm is to update the assumed steering vector ãd[i]
with RLS iterations, and the updated beamformer ω[i] is obtained

by plugging (26) into (12) without significant extra complexity.

Note that the complexity introduced by the pseudo-inverse op-

eration can be removed if SD has orthogonal column vectors, this

can be achieved by incorporating the Gram-Schmidt procedure in

the calculation of SD . Furthermore, an alternative recursive realiza-

tion of the robust adaptive linear constrained beamforming method

introduced by [12] can be used to further reduce the computational

complexity requirement to obtain the diagonal loading terms.

5. SIMULATIONS

In this section, we consider simulations for a ULA with λc/2 spac-

ing between the sensor elements and arrays with 64 and 320 sensor

elements. The covariance matrix R̂ is obtained by time-averaging

recursions with N = 1, . . . , 120 snapshots, we use the spherical un-

certainty set and the upper bound is set to ε = 140 for 64 sensor

elements and ε = 800 for 320 sensor elements. There are 4 inci-

dent signals while the first is the SoI, the other 3 signals’ relative

power with respect to the SoI and their DoAs in degrees are detailed

in Table I. The algorithms are trained with 120 snapshots and the

Signal-to-Noise Ratio (SNR) is set to 10 dB for all the simulations.
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Table 1. Interference and DoA Scenario, P(dB) relative to desired user1 /
DoA (degree)

Snapshots signal1 (SoI) signal 2 signal 3 signal 4

1-120 10/90 20/35 20/135 20/165

In Fig. 1, we select D = 2 for rank reduction, the proposed

RCB-MJIO method with the RLS algorithm is used to obtain the in-

verse of the covariance matrix R̂
−1

[i] for each snapshot. We intro-

duce a maximum of 2 degrees of DOA mismatch which is indepen-

dently generated by a uniform random generator in each simulation

run. A non-orthogonal Krylov projection matrix SD[i] ∈ C
64×2 and

a non-orthogonal MJIO rank-reduction matrix is also generated for

rank reduction. SD[i] is initialized as SD[0] = [IT
D,0T

D×(M−D)].
In Fig.2, we choose a similar scenario but without DOA mismatch.

We can see from the plots that the the MJIO and Krylov algorithms

have a superior SINR performance to other existing methods and this

is particularly noticeable for a reduced number of snapshots.

In Fig. 3 we compare the output SINRs of the Krylov and the

proposed MJIO rank reduction technique using a spherical constraint

in the presence of steering vector errors with 320 sensor elements.

We assume a DOA mismatch with 2 degrees and 4 interferences with

the profile listed in Table I. With Krylov and MJIO rank-reduction,

the MVDR-Krylov, MVDR-MJIO, RCB-Krylov and RCB-MJIO

have superior SINR performance and a faster convergence com-

pared with their full-rank rivals.
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Fig. 1. SINR performance vs. number of snapshots, with steering vector
mismatch due to 2 °DoA mismatch. Spherical uncertainty set is assumed for

robust beamformers ε = 140 ( RLS indicates the value R̂
−1

is obtained by
using RLS adaptation), non-orthogonal SD [i] ∈ C64×2 projection matrix.
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