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Abstract—We present a new, semi-analytic inversion method
for nuclear magnetic resonance (NMR) log measurements. Our
method represents multiwait-time measurements via short sums
of exponentials. The resulting sparse T2 distribution requires
fewer T2 relaxation times than present in linearized inversion
methods. The T1 relaxation times, and corresponding amplitudes
are estimated via convex optimization and a semi-analytic algo-
rithm. We obtain an efficient way to represent the NMR data
that can be utilized to estimate petrophysical properties and for
compression in logging-while-drilling applications.

I. INTRODUCTION

Nuclear magnetic resonance (NMR) logging tools indirectly
measure the amount of hydrogen atoms in a geological for-
mation which provides a way to infer about its porosity
and permeability. Currently, NMR logging tools are the only
available tools that provide information about pore geometry
and disposition of fluids. In this regard, NMR tools are
invaluable in determining the quality, production planning and
development of a reservoir.

While advancements in logging-while-drilling (LWD) tool
design and manufacturing improve reliability of real-time
NMR measurements, transmission of the raw measured or
processed data from downhole to uphole is still limited by
the telemetry bandwidth. Compression algorithms are utilized
to transmit either raw or processed echo trains or petrophysical
measurements derived from the T2 inversion process [5], [4].
Readers interested in the physics of NMR measurements and
related inverse problems are referred to [3].

Motivated by the compression problem for LWD, we have
developed a new inversion method for NMR log data and
applied it to compute efficient representations of Carr-Purcell-
Meiboom-Gill (CPMG) echo decay train measurements. These
representations only require a small number of relaxation times
T2 and T1, and corresponding amplitudes, thus reducing the
amount of parameters transmitted uphole.

Linear inversion methods select in advance a fixed set of
T2 and T1 relaxation times and compute, solving a linear
system, the corresponding amplitudes a which are compressed
for transmission uphole [3], [5], [4]. These methods yield many
more parameters than indicated by physical considerations.
In contrast, non-linear optimization-based methods seek to
estimate a small set of parameters (a, T1, T2)s, albeit at a

higher computational cost [7], [9]. Unlike current NMR data
inversion methods, our method does not require predefined T2
and T1 values, nor does it solve a large non-linear optimization
problem. It is a semi-analytic inversion method that computes
an approximate representation of the data in terms of a
sparse set of parameters (a, T1,T2). Using a common set of
exponentials to represent the data, we obtain the T2 values
which we use subsequently to compute the amplitudes a via
convex optimization. Finally, T1 values are obtained in an
analytic fashion by appropriate averaging. In our preliminary
experiments, the proposed method provides a more efficient
representation of the data than those generated by linearized
methods. We expect that our method will prove computation-
ally less demanding than non-linear optimization methods.

II. NMR INVERSION PROBLEM

NMR logging tools typically acquire CPMG echo decay
trains. Given N multiwait-time measured echo trains, Mn,
n = 1, . . . , N , each consisting of Kn echoes, Mn (k), k =
1, . . . ,Kn, the NMR inversion problem is typically formulated
as follows: find a set of positive parameters (aj , T1,j , T2,j),
such that the error sequences εn in

Mn (k) =

J∑
j=1

aj

(
1− e

−
TW,n
T1,j

)
e
− k TET2,j + εn (k) , (1)

are within the level of noise [3, Section 6.2]. Here T2,j are
the T2 relaxation times, aj are the T2 amplitudes (which are
the partial porosity of the pores), T1,j are the corresponding
T1 relaxation times (associated with the size of the pores),
TW,n is the nth wait-time and TE is the time sample between
consecutive echoes, also referred to as the echo-spacing. The
wait times TW,n are positive and distinct and we assume that
they are ordered as TW,1 > TW,2 > . . . > TW,N .

The inversion problem (1) may be solved using linear [3]
or non-linear [11], [7], [8], [9] methods but is always an ill-
posed problem with non-unique solutions [3], [8]. To address
this issue, the problem is usually approached by fixing specific
T1 and T2 relaxation time values or imposing artificial bounds
on them. Regularization factors that impose smoothness on
the solution may be used as well. In contrast, our approach
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takes advantage of the exponential nature of the model (1).
In practice, our method determines a small number of terms J
required to represent all echo trains while exploiting physical
bounds on the ratios between the relaxation times T1 and T2.

III. PROPOSED NEW ALGORITHM FOR INVERSION

A. Step 1: Estimating T2,j
The expected error ε of an exponential fit∣∣∣∣∣∣M (k)−

J∑
j=1

wjγ
k
j

∣∣∣∣∣∣ < ε, k = 0, . . . ,K (2)

is governed by the decay of the singular values of a rect-
angular Hankel matrix M of entries [M]m,l = M (m+ l),
0 ≤ m ≤ K − L, 0 ≤ l ≤ L. Here L ≤ K/2 is a parameter
which overestimates the minimal number of terms J , which,
for physical reasons, is a small number. Two solutions to the
exponential fit problem via Hankel matrices are presented in
[10], [6]. In the recent approach [1], [2], a square Hankel
matrix is considered and the minimal number of terms J in
(2) is directly related to the index of the singular value of
M closest to ε. Here, singular values are sorted in decreasing
order and normalized so that σ1 = 1.

Even though, for fixed n, the model (1) can be expressed in

the form (2), where wj is replaced by aj

(
1− e

−
TW,n
T1,j

)
and

γj by e
− TE
T2,j , the inversion problem requires determination of

γj’s that can simultaneously fit the N echo trains Mn. We
achieve this fit by performing a singular value decomposition
of the matrix

M =


1√

K1−L+1
M1

1√
K2−L+1

M2

...
1√

Kn−L+1
MN

 ,
where Mn are Hankel matrices of entries [Mn]m,l =
Mn (m+ l), 0 ≤ l ≤ L ≤ minn {Kn} /2, 0 ≤ j ≤ Kn − L.
We pick a singular value σ of M close to the standard deviation
of the errors εn, i.e. E

[∑
n ε

2
n

]1/2
and form the polynomial

of degree L− 1 whose coefficients are the entries of the right
singular vector associated with σ. Due to the real positivity
constraint on T2,j , we set γj to be the roots of this polynomial
that lie within [0, 1] and estimate T2,j = TE/ ln γ

−1
j . If the

level of noise is too high or it is hard to estimate, we simply
compute the roots in (0, 1) associated to all the right singular
vectors of M and pick the set that provides the best fit of the
model (1). In addition, linear inversion methods could be used
as a preliminary step to denoise the echo trains.

B. Step 2: Estimating aj
To match (1), using the values γj of step 1, we solve a

constrained non-negative least square problem

Mn(k) ≈
J∑
j=1

wn,jγ
k
j

for wn,j , with constraints wn,j > 0 and wn+1,j < wn,j , for
n = 1, . . . , N − 1 which follow from the ordering of wait
times. We show next that such a solution may be factor as

wn,j = ajpn,j , (3)

where aj > 0 and pn,j are the polarization factors

pn,j = 1− e
−
TW,n
T1,j . (4)

In order to estimate pn,j from wn,j , let βn ∈ (0, 1) be

βn = TW,n+1/TW,n, n = 1, . . . , N − 1 (5)

and observe that(
1− wn,j

aj

)βn
= (1− pn,j)βn = e

−
βnTW,n
T1,j

= e
−
TW,n+1
T1,j = 1− wn+1,j

aj
, (6)

where we have used (3), (4), and (5). We rewrite (6) as

0 =yβnn,j − qn,jyn,j + qn,j − 1, (7)

where qn,j = wn+1,j/wn,j and yn,j = 1 − pn,j are both in
(0, 1). Thus, finding the polarization factors pn,j is equivalent
to finding zeros of g(y) = yβn−qn,jy+qn,j−1 for y ∈ (0, 1).
Note that

qn,j =
pn+1,j

pn,j
=

1− e
−
TW,n+1
T1,j

1− e
−
TW,n
T1,j

>
TW,n+1

TW,n
= βn, (8)

which, together with βn ∈ (0, 1), implies that g is a strictly
concave function on (0, 1) which attains its maximum at
Yn,j = (βn/qn,j)

1
1−βn < 1. Since g(0) = qn,j − 1 < 0,

g(1) = 0, and g is strictly increasing in (0, Yn,j), it has exactly
one zero in (0, Yn,j). Hence, for each n, (7) has a unique
solution yn,j and we set pn,j = 1 − yn,j . Due to (3), we
estimate aj as a weighted arithmetic mean

aj ≈
N−1∑
n=1

wn,j
pn,j

Pa(n), (9)

where the probability measure Pa (see Section III-D) excludes
very small values of pn,j generated when TW,n/T1,j is very
small. Also, if TW,n/T1,j is large, the polarization factor pn,j
is very close to 1 and we can use (3) to directly estimate aj
as wn,j .

C. Step 3: Estimating T1,j
Using (9), we introduce the new estimate pn,j = wn,j/aj

which, by (4), yields

1

T1,j
= − 1

TW,n
ln

(
1− wn,j

aj

)
, (10)

for each n. Similar to [12], [13], where the expectation of T1
relaxation times are computed via a harmonic mean based on
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TABLE I
MEASUREMENT (aj , χj , T2,j) AND ACQUISITION

(
TE , TW,n,Kn

)
PARAMETERS USED TO GENERATE THE SYNTHETIC DATA.

j aj χj = T1,j/T2,j T2,j (s)
1 0.0411 1.25 0.0224
2 0.0412 1.25 0.0259
3 0.0391 1.25 0.0300
4 0.0011 2 1.1589
5 0.0260 2 1.3413

TE = 1 ms

n TW,n(s) Kn

1 9.0 1000
2 3.0 1000
3 1.0 1000
4 0.3 300
5 0.1 100
6 0.03 30
7 0.01 10

known distributions of T2 relaxation times, we estimate the
corresponding T1,j as a weighted harmonic mean:

T1,j =

[
−

N∑
n=1

1

TW,n
ln

(
1− wn,j

aj

)
PT1(n)

]−1
,

for an appropriately chosen probability measure PT1
, which

we discuss next.

D. A choice for the probability measures Pa and PT1

As already pointed out, for long wait times, (4) implies
pn,j ≈ 1 and, hence, wn,j is already a good estimate for aj .
On the other hand, short wait times provide better estimates
for T1,j . In our numerical examples, we choose a uniform
distribution for Pα (α is either a or T1) defined as

Pα(n) =
1

|Iα|
∑
m∈Iα

δn,m

for some index set Iα ⊂ {1, . . . , N} having |Iα| number of
elements, where δm,n is the Kronecker delta function, equal
to one when m = n and zero otherwise. Ia contains indices
corresponding to long wait times and IT1

indices correspond-
ing to short wait times. In this way we avoid numerical errors
that direct use of (10) could cause.

IV. NUMERICAL EXAMPLES

A. Noise-free case
We test the proposed method on noise-free synthetic data

generated using (1) with εn(k) = 0, for all n, k. The ac-
quisition and measurement parameters are listed in Table I.
The synthetic data, its approximation, and the logarithm of
the absolute error (which is less than 10−8) are displayed in
Figure 1. The relative errors of the estimated parameters are
listed in Table II.

B. Noisy case
We also test the proposed algorithm on simulated noisy

measurements by adding zero-mean Gaussian white noise with
a standard deviation of 0.005 to the noise-free synthetic data
shown in Figure 1. The noisy measurements, our denoised
approximation (with J = 2 terms), and their difference are
displayed in Figure 2. This difference lies within the noise
level.

Fig. 1. [Top] Synthetic data (blue) generated using the parameters in Table
I and the corresponding estimate using the proposed method (red). [Bottom]
Logarithm of the approximation error.

TABLE II
RELATIVE ERROR OF ESTIMATED PARAMETERS

j |ãj − aj | /aj |χ̃j − χj | /χj

∣∣∣T̃2,j − T2,j

∣∣∣ /T2,j

1 6.9042× 10−7 1.937× 10−6 5.0104× 10−8

2 1.4627× 10−6 2.9483× 10−6 2.7475× 10−7

3 2.2767× 10−6 1.2760× 10−6 9.3993× 10−8

4 9.3651× 10−3 1.2843× 10−4 6.4953× 10−4

5 4.1239× 10−4 6.3996× 10−6 3.2651× 10−5

Fig. 2. [Top] Noisy measurement (blue) and denoised approximation (red).
[Bottom] The logarithm of the absolute value of the difference between them.

TABLE III
PARAMETERS ESTIMATED FROM NOISY VERSION OF SYNTHETIC DATA

PRESENTED IN FIGURE 1.

j aj χj = T1,j/T2,j T2,j

1 0.1236 2.2184 0.0255× 103

2 0.0275 1.3973 1.3685× 103
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Fig. 3. [Top] Noise-free data (blue) and denoised approximation of the noisy
data (red). [Bottom] The logarithm of the absolute value of the difference
between them.

TABLE IV
ESTIMATE OF POROSITY, Φ =

∑J
j=1 aj , OBTAINED FROM NOISY DATA

COMPARED WITH THE EXACT POROSITY OF THE SYNTHETIC NOISE-FREE
DATA GENERATED USING THE PARAMETERS IN TABLE 3.

Porosity estimated
from noise-free data

(Table I)

Porosity estimated
from noisy data

(Table III)

Relative
error

Φ0 = 0.1485 ΦE = 0.1511
|ΦE−Φ0|

Φ0
= 0.0175

V. DISCUSSION

In Figure 3 (top) we superimposed the denoised approxima-
tion of the data in Figure 2 with the approximation of the noise-
free data (see Figure 1) generated by the parameters listed in
Table I. The denoised approximation requires only J = 2 terms
for the error to stay within the noise level. Furthermore, when
we compare the porosity computed using the amplitudes of the
noise-free data and the denoised approximation, the relative
error is less than 2% (see Table IV).

In practice, linearized inversion methods use between 16
and 32 T2 relaxation times and between 1 and 5 T1 relaxation
times, hence, the need to compress and transmit up-hole in the
range of 16 and 160 amplitudes. In our numerical experiments,
we observed that at most 4, if not less, triples (a, T1,T2) were
sufficient to achieve an approximation within the noise level.
Therefore, only 12 values are compressed and transmitted up-
hole. Compared to the best linearized inversion scenario, the
proposed method provides, at least, a 25% reduction in the
number of parameters compressed and transmitted up-hole.

VI. CONCLUSION

We have presented a new, semi-analytic inversion method
for nuclear magnetic resonance log data. This method assumes
sparsity on the T2 relaxation times and, consequently, finds
a sparse model to represent the data within the noise level.
The sparsity assumption eliminates the need for processing

parameters present in linearized inversion methods. Because
our method is a semi-analytic method, it is potentially more
efficient than non-linear optimization-based inversion methods.

The resulting T1 and T2 relaxation times and corresponding
amplitudes are useful for the estimation of petrophysical
properties and for data compression in LWD applications. For
LWD applications, our method produces fewer values to be
compressed and transmitted up-hole than linearized inversion
methods.
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