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Abstract—Energy management for a microgrid featuring dis-
tributed generation from conventional and renewable energy
sources and adjustable loads is the theme of this paper. The
microgrid is connected to the main grid, thus enabling energy
import from and export to the main grid. A two-stage stochastic
programming formulation is developed, where first-stage deci-
sions are the conventional generation schedules and adjustable
load set points, while second-stage decisions include energy
transactions with the main grid as well as load adjustments
made in real time. The two-stage problem is reformulated as
an equivalent linear program. Simulated tests demonstrate the
interplay between the various energy management decisions.

I. INTRODUCTION

Microgrids are small-footprint power systems featuring dis-
tributed generation (DG), and electricity end-users. DG refers
to small-scale power generators that use conventional fuels
and generators relying on renewable energy sources (RES),
such as wind or solar energy. Typical microgrid loads include
critical non-dispatchable types and also adjustable ones.

DG brings power closer to where it is consumed, thereby
incurring fewer thermal losses and bypassing transmission
network congestion. Microgrids therefore find their place in
diverse infrastructure setups such as campuses, rural areas,
islands, or distribution networks serving residential and com-
mercial end-users [1]. Microgrids can be operated connected
to or disconnected from the main grid.

In this context, the present paper deals with optimal energy
management for both supply and demand of a microgrid incor-
porating renewable energy. Stochastic programming tools are
leveraged to cope with the renewable energy uncertainty, while
optimal real-time control of the adjustable load consumption
is incorporated. The microgrid is connected to the main grid,
and energy can be sold to or purchased from the main grid.

Energy management in microgrids has been addressed in [2]
and [3] without taking the renewable energy uncertainty into
account. Chance-constrained optimization has proved to be
a valuable tool in coping with renewable energy uncertainty
as demonstrated in e.g., [4]–[6]; albeit in these works, no
real-time decisions regarding energy transactions with the
main grid or load adjustments are considered. Recently, a
robust energy management model for microgrids in connected
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mode has been developed [7], but without real-time load
adjustments. Two-stage stochastic programming has also been
pursued—see e.g., [8]–[10] and references therein.

This paper develops a two-stage stochastic optimization
model to minimize the microgrid operating cost. First-stage
decisions yield the conventional generation schedules and ad-
justable load set points, and are made ahead of the scheduling
horizon. Second-stage decisions are taken in real time, and
these include energy import from or export to the main grid,
as well as load adjustments. The microgrid operating cost
comprises the cost of conventional DG offset by the adjustable
load utilities at the scheduled set points, and the expected real-
time transaction and load adjustment cost.

The stochastic programming model developed here consid-
ers the expected transaction cost as opposed to the robust
formulation of [7], which deals with the worst-case transaction
cost. Moreover, the model in [7] does not consider real-time
load adjustments. Different than [8]–[10], the intricacies of
the transaction mechanism may introduce non-convexity in
the problem. Furthermore, typical two-stage stochastic pro-
gramming approaches require an accurate renewable energy
production forecast for the entire horizon. The present model
on the other hand entails second-stage decisions made on a
slot-by-slot basis, requiring only a forecast for the current slot.

The remainder of this paper is organized as follows. Sec-
tion II details the two-stage optimization formulation. The
problem is transformed to an equivalent linear program in
Section III. Numerical tests are presented in Section IV, and
Section V includes pointers to future research directions.

II. PROBLEM STATEMENT

This section details the two-stage stochastic optimization
model for microgrid energy management. The ensuing sub-
sections present the microgrid components and the associated
decision variables, followed by the optimization formulation.
The scheduling horizon is denoted by T , while periods (slots)
are generically indexed by t.

Scheduling decisions are made in two stages. The first stage
corresponds to a time ahead of the scheduling horizon, and
entails conventional generation schedules and adjustable load
set points. The second stage pertains to the real-time operation,
and includes energy import from or export to the main grid,
as well as load adjustments.
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A. Conventional distributed generation

Consider a microgrid comprising a set M of fuel-
consuming DG units generically indexed by m. Let P t

Gm
be

the power generated by the mth unit at slot t. The correspond-
ing cost is Cm(P t

Gm
), and is taken to be convex and strictly

increasing. The power output is constrained to be between
lower and upper bounds Pmin

Gm
and Pmax

Gm
. Ramp-up and

ramp-down limits, denoted as Rup
m and Rdown

m , constrain the
power output between successive slots through the inequalities
P t
Gm

− P t−1
Gm

≤ Rup
m and P t−1

Gm
− P t

Gm
≤ Rdown

m . Let vector
p
t
G collect P t

Gm
for all m, and pG collect pt

G for all t.

B. Renewable distributed generation

The microgrid features a set I of renewable DG units. The
power output of the ith such unit at slot t is random, and
is denoted by W t

i . With w
t collecting W t

i for all i, and w

collecting w
t for all t, the distribution of w is assumed to be

known in terms of scenarios, as explained in Section III.

C. Adjustable and nonadjustable loads

A set N of adjustable loads is served by the microgrid
energy sources. The load dispatch is taking place in two stages.
The first-stage decision is the desirable load set point, which
is denoted by P t

Dn
for the nth load at slot t. The second-stage

decision pertains to the load adjustment At
n, which may be

positive or negative. This adjustment depends on the actual
renewable energy generated at slot t, as explained shortly.

The actual consumption at slot t is given by P t
Dn

+ At
n,

and is constrained to be within lower and upper bounds Pmin
Dn

and Pmax
Dn

, respectively. The set point is determined via a
utility function Un(P t

Dn
), which is selected to be concave and

strictly increasing. Negative load adjustments are penalized
linearly with a price δtn, while positive load adjustments are
not penalized, as the latter means more power to the loads.

In addition to the adjustable loads, let Lt denote a known
nonadjustable load at slot t.

D. Transaction with the main grid

The difference between the consumed and generated power,
∑

n(P
t
Dn

+ At
n) + Lt −

∑

m P t
Gm

−
∑

iW
t
i , signifies the

shortage or excess of power at slot t. The amount of power
shortage will be imported from the main grid with known price
αt at slot t, while excess power can be exported to the main
grid with known price βt.

E. Two-stage formulation

Having described the microgrid components, this subsection
details the scheduling problem.

1) Second-stage problem: The generation schedules pG

and load set points pD are considered known in the second
stage. At the beginning of the slot t, an accurate short-

term prediction of the produced renewable energy w
t be-

comes available. Then, the real-time scheduling problem per
t amounts to minimizing the cost stemming from the load
adjustment penalty and the transaction with the main grid:

Qt(pt
G,p

t
D,wt) = min

at∈R|N|
δtn[A

t
n]

−

+ αt

[

∑

n∈N

(P t
Dn

+At
n) + Lt −

∑

m∈M

P t
Gm

−
∑

i∈I

W t
i

]+

− βt

[

∑

n∈N

(P t
Dn

+At
n) + Lt −

∑

m∈M

P t
Gm

−
∑

i∈I

W t
i

]−

(1a)

subject to

Pmin
Dn

≤ P t
Dn

+At
n ≤ Pmax

Dn
, n ∈ N (1b)

where [x]+ := max{x, 0} and [x]− := max{−x, 0}. The three
terms of the objective in (1a) constitute the load adjustment
penalty, the energy import cost, and the opposite of the revenue
due to energy export, respectively. The optimal value depends
on the schedules pt

G, pt
D, and the renewable energy realization

w
t. Convexity properties of problem (1) are addressed next.1

Lemma 1. If αt ≥ βt, then (1) is convex in a
t, and the optimal

value Qt(pt
G,p

t
D,wt) is convex in p

t
G and p

t
D.

Lemma 1 asserts that convexity is ensured when the import
price αt is no less that the export price βt for all t ∈ T .

2) First-stage problem: The first-stage problem optimizes
the generation schedules and load set points as follows:

min
pG,pD

∑

m∈M

Cm(P t
Gm

)−
∑

n∈N

Un(P
t
Dn

)

+ Ew

[

∑

t∈T

Qt(pt
G,p

t
D,wt)

]

(2a)

subject to

Pmin
Gm

≤ P t
Gm

≤ Pmax
Gm

, m ∈ M, t ∈ T (2b)

P t
Gm

− P t−1
Gm

≤ R
up
m , m ∈ M, t ∈ T (2c)

P t−1
Gm

− P t
Gm

≤ R
down
m , m ∈ M, t ∈ T (2d)

Pmin
Dn

≤ P t
Dn

≤ Pmax
Dn

, n ∈ N , t ∈ T . (2e)

The objective in (2a) includes the generation cost, load utility,
and expected cost due to second-stage adjustments. Com-
paring (1) with (2), it is worth noting that the first-stage
decisions are valid for all renewable energy output realizations
(scenarios), while the second-stage decisions are adaptive to
the actual renewable energy output at every slot.

Under the assumptions of Lemma 1, problem (2) is convex,
and can be written in a form amenable to numerical solvers
as explained in the ensuing subsection.

III. LINEAR PROGRAM REFORMULATION

For the remainder of this paper, it will be assumed that
the costs Cm(P t

Gm
) and the utilities Un(P t

Dn
) are piecewise

linear; both are typical modeling options. Problem (2) can then
be conveniently written as a linear program, upon certain mod-
eling simplifications for the distribution of w, and introduction
of appropriate auxiliary variables.

Specifically, the distribution of w can be described by a
set of plausible renewable generation output scenarios (real-
izations). With S denoting the set of scenarios, the renewable

1Proofs will be included in the journal version of this paper.
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energy output {wt(s)}t∈T across the entire horizon and an
associated probability π(s) are specified for each s ∈ S.
With this modeling choice, the expectation in (2a) can be
substituted by the sum

∑

s π(s)
∑

t Q
t(pt

G,p
t
D,wt(s)). There

are different methods to obtain sets of scenarios based on
physical modeling considerations—see e.g., [11, Ch. 3], [10]
and [6] for wind energy.

The next step is to introduce appropriate auxiliary variables.
Specifically, variables Rt+(s) and Rt−(s) for t ∈ T and s ∈ S
are introduced to represent the energy shortage or excess, as
will be seen shortly. Likewise, variables At+

n (s) and At−
n (s)

for n ∈ N , t ∈ T , and s ∈ S representing the positive and
negative load adjustments are also introduced.

Let vectors r
+, r

−, a
+, a

− correspondingly collect the
previously mentioned auxiliary variables. With the aim of
solving (2), the following problem can be formulated:

min
pG,pD,r+,r−,a+,a−

∑

m∈M

Cm(P t
Gm

)−
∑

n∈N

Un(P
t
Dn

)

+
∑

s∈S

π(s)
∑

t∈T

[

∑

n∈N

δtnA
t−
n (s) + αtRt+(s)− βtRt−(s)

]

(3a)

subj. to

Pmin
Gm

≤ P t
Gm

≤ Pmax
Gm

, m ∈ M, t ∈ T (3b)

P t
Gm

− P t−1
Gm

≤ R
up
m , m ∈ M, t ∈ T (3c)

P t−1
Gm

− P t
Gm

≤ R
down
m , m ∈ M, t ∈ T (3d)

Pmin
Dn

≤ P t
Dn

≤ Pmax
Dn

, n ∈ N , t ∈ T (3e)

Pmin
Dn

≤ P t
Dn

+At+
n (s)−At−

n (s) ≤ Pmax
Dn

,

n ∈ N , t ∈ T , s ∈ S (3f)
∑

n∈N

(P t
Dn

+At+
n (s)−At−

n (s)) + Lt −
∑

m∈M

P t
Gm

−
∑

i∈I

W t
i

= Rt+(s)−Rt−(s), t ∈ T , s ∈ S (3g)

At+
n (s) ≥ 0, At−

n (s) ≥ 0, Rt+(s) ≥ 0, Rt−(s) ≥ 0,

n ∈ N , t ∈ T , s ∈ S. (3h)

The previous formulation includes the first-stage decisions
pG and pD, as well as the second-stage decisions for every
possible renewable energy production scenario, through the
auxiliary variables At+

n (s), At−
n (s), Rt+(s), and Rt−(s).

Specifically, it is apparent from (3f)–(3h) that the load ad-
justment is written as At+

n (s) − At−
n (s), while the energy

shortage/excess as Rt+(s) − Rt−(s). Notice further that the
expectation in (2a) is substituted by an explicit expression
based on the objective in (1a).

In order for problem (3) to be equivalent to (2), only
one among the At+

n (s) and At−
n (s) should be allowed to be

nonzero, and likewise for Rt+(s), and Rt−(s). This property
is established in the following lemma for the optimal solution
of (3).

Lemma 2. If αt ≥ βt and αt > 0 for all t ∈ T , then only

one among the optimal Rt+∗
(s) and Rt−∗

(s) may be positive,

for all t ∈ T and s ∈ S. Likewise, if δtn > 0 for all t ∈ T

TABLE I
PARAMETERS OF CONVENTIONAL DG UNITS.

m 1 2 3

Pmin
Gm

(kWh) 10 8 15

Pmax
Gm

(kWh) 50 45 70

am (cents/kWh) 40 60 20

TABLE II
PARAMETERS OF ADJUSTABLE LOADS.

n 1 2 3 4 5 6

Pmin
Dn

(kWh) 0.5 4 2 5.5 1 7

Pmax
Dn

(kWh) 10 16 15 20 27 32

bm (cents/kWh) 30 40 50 60 70 80

and n ∈ N , then only one among the optimal At+
n

∗
(s) and

At−
n

∗
(s) may be positive, for all n ∈ N , t ∈ T , and s ∈

S. If δtn = 0 for some t and n, then from any optimal pair

(At+
n

∗
(s), At−

n
∗
(s)), it is possible to recover a pair so that

only one of At+
n

∗
(s) and At−

n
∗
(s) may be positive.

Lemma 2 establishes that the differences At+
n (s)−At−

n (s)
and Rt+(s) − Rt−(s) yield the optimal load adjustments
and energy shortage/excess amounts, rendering problems (3)
and (2) equivalent. The advantage is that (3) is a linear
program, and can be solved very efficiently. It is also worth
emphasizing that (3) not only returns the generation schedules
and load set points, but also the real-time decisions for load
adjustments and energy import/export as a function of the
plausible renewable energy production scenarios.

IV. NUMERICAL TESTS

The design is tested on a microgrid with |M| = 3 con-
ventional DG units, |I| = 4 wind energy plants, and |N | = 6
adjustable loads, while the horizon length is T = 8 hours. The
parameters of the conventional DG units are listed in Table I,
where the cost has the linear expression Cm(P t

Gm
) = amP t

Gm
,

and the ramp limits for all units are Rup
m = Rdown

m = 40kWh.
Table II lists the adjustable load parameters, where the utility
function has the form Un(P t

Dn
) = bnP t

Dn
. All wind plants

are rated at 30kWh, and the scenarios {W t
i (s)} are generated

based on the procedure and the parameters detailed in [6].
The import prices and the system base load are chosen

similar to [7], and are listed in Table III. The export prices
are set to βt = 0.3αt, while the adjustment penalties δtn will
be varied throughout the numerical tests.

Figure 1 depicts the objective value for different values
of δtn = δt for all n, and for |S| = 500 realizations.
Clearly, the case δt = 0 allows for adjustment at no cost
in real time, and leads to the smallest objective value. As
δt increases, the adjustment becomes costlier, causing the
net cost to become larger. The objective takes its highest
value—and remains constant at this value—when δt ≥ αt.
The reason is that importing energy is cheaper than real-time
load adjustment when δt ≥ αt. In other words, the case
δt ≥ αt essentially amounts to allowing no adjustment, that
is, setting At+

n (s) = At+
n (s) = 0 in (3). This intuition is

confirmed by solving (3) with the aforementioned additional
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TABLE III
IMPORT PRICES AND MICROGRID BASE LOAD

Slot t 1 2 3 4 5 6 7 8
αt (cents/kWh) 20.1 22.0 36.2 66.0 58.3 39.9 25.3 23.4

Lt (kWh) 57.8 58.4 64 65.1 61.5 58.8 55.5 51

0 0.15 0.3 0.6 1 2

−5

−4

−3

−2

−1

0 x 104

δt/αt

O
bj
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tiv

e 
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lu
e

Fig. 1. Objective value for different values of δtn.

constraint, which yields approximately the same objective
value as depicted in the last two bars of Fig. 1.

Table IV lists the objective value achieved when the number
of scenarios varies. The first 6 rows correspond to the same
adjustment penalty values as in Fig. 1. The 7th row is obtained
for random values of δtn/α

t, uniform in the interval (0.3,1),
and different for all n. The last row corresponds to the model
without adjustment. The objective values for different number
of scenarios do not differ by more than 1%.

Fig. 2 shows the individual expected costs comprising the
last summand in (3a), obtained with |S| = 500 scenarios.
Several observations can be made. The adjustment cost is
clearly zero when δt = 0, and it increases as δt increases
taking values greater than zero. When δt reaches the value of
the import price αt, then the adjustment cost drops to nearly
zero. This is due to the fact that no adjustment is typically
taking place when δt ≥ αt, as it is cheaper to import energy in
this case. Note by the same token that the import cost is close
to zero when δt < αt. It is also worth noting that significant
export is expected to take place when δt < βt = 0.3αt. The
premise is that in this case the microgrid cost can be lowered
by reducing the adjustable loads below their scheduled set
points and by exporting the excess energy. The situation is
reversed when δt ≥ βt, whereby there is generally no gain
from exporting energy resulting from load reduction.

V. FUTURE DIRECTIONS

This paper developed a two-stage stochastic programming
model for energy management in microgrids with DG and
controllable loads. First-stage decisions are the conventional
DG schedules and load set points, while load adjustments and
energy transactions with the main grid take place at the second
place in a fashion adaptive to the produced renewable energy.

Distributed storage is a key element of microgrids that
adds extra flexibility in the energy management decisions,
and will be included in the two-stage stochastic programming

TABLE IV
OBJECTIVE VALUE FOR DIFFERENT NUMBER OF SCENARIOS.

δt/αt |S| = 100 |S| = 300 |S| = 500
0 -50254.39 -50148.96 -50193.89
0.15 -45987.34 -45662.25 -45836.78
0.3 -41476.50 -41416.10 -41387.92
0.6 -36429.47 -36358.78 -36257.41
1 -32298.52 -32381.26 -32405.08
2 -32779.85 -32355.79 -32498.45
Unif.(0.3, 1) -37227.35 -37112.69 -37306.73
No adj. -32484.13 -32235.54 -32473.02

0 0.15 0.3 0.6 1 2
0

1000

2000

3000

4000

5000
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7000

8000

9000
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Import cost
Export revenue
Adjustement cost

Fig. 2. Expected costs for different values of δt .

framework in future work. In addition, developing decen-
tralized solvers that run across the local computation and
control modules of the microgrid components—that is, the
DG, storage, and adjustable loads—is another future direction.
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