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Abstract—We present a framework for Tensor-based subspace
Tracking via Kronecker-structured projections (TeTraKron).
TeTraKron allows to extend arbitrary matrix-based subspace
tracking schemes to track the tensor-based subspace estimate.
The latter can be computed via a structured projection applied
to the matrix-based subspace estimate which enforces the multi-
dimensional structure in a computationally efficient fashion. This
projection is tracked by considering all matrix rearrangements
of the signal tensor jointly, which can be efficiently realized via
parallel processing. In time-varying scenarios, the TeTraKron-
based tracking schemes outperform the original algorithms as
well as the batch solutions provided by the SVD and the HOSVD.

I. INTRODUCTION

The design of adaptive algorithms to track the subspace of
an instationary random signal has a long standing history in
signal processing. The main challenges are achieving a fast
adaptation and a good steady-state behavior while keeping
the computational complexity low. While the first subspace-
tracking schemes like [7] still had a complexity of O

{
M2 · d

}
where M is the number of channels (sensors) and d is the rank
of the signal subspace, this was later lowered to O

{
M · d2

}
[5] or even O {M · d} [6]. Overall, a very large number of
subspace tracking schemes is known, for a survey the reader
is referred to [2].

For stationary multi-dimensional signals, it has been shown
that the subspace estimation accuracy can be significantly
improved if tensors are used to store and manipulate the
signals. A signal subspace estimate based on the Higher-Order
SVD (HOSVD) [1] was introduced in [3]. Therefore, extending
this subspace estimation scheme to the tracking of the subspace
of a time-varying multidimensional signal is of significant
interest.

To this end we introduce the tensor-based subspace tracking
via Kronecker structured projections (TeTraKron) framework.
TeTraKron extends arbitrary matrix-based subspace tracking
schemes to the tracking of the HOSVD-based subspace esti-
mate defined in [3] by running them on all the unfoldings of
the data tensor in parallel. Note that tracking the subspaces
of all unfoldings of a tensor has been proposed before, e.g.,
in [4, 10]. However, these approaches do not consider the re-
combination of these subspaces to the HOSVD-based subspace
estimate from [3]. The computationally efficient recombination
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is the main focus of the TeTraKron framework. Moreover,
[4, 10] require to track the core tensor of the HOSVD which
TeTraKron does not need at all.

To facilitate the distinction between scalars, vectors, ma-
trices, and tensors, the following notation is used throughout
the manuscript: scalars are represented by italic letters, vectors
by lower-case bold-faced letters, matrices by upper-case bold-
faced letters, and tensors as bold-faced calligraphic letters.
The superscripts T, H, −1, and ∗ refer to matrix transposition,
Hermitian transposition, matrix inversion, and complex conju-
gation, respectively. The Kronecker product is represented via
⊗ and the Khatri-Rao (columnwise Kronecker) product via �.
The operator Tri{·} calculates the upper/lower triangular part
of its argument and copies its Hermitian transpose to the other
lower/upper triangular part [11].

An R-way tensor with size Ir along mode r = 1, 2, . . . , R
is represented as A ∈ C

I1×I2×...×IR . The r-mode vectors of
A are obtained by varying the r-th index from 1 to Ir and
keeping all other indices fixed. Aligning all r-mode vectors
as the columns of a matrix yields the r-mode unfolding of
A which is denoted by [A](r) ∈ C

Ir×Ir+1·...·IR·I1·...·Ir−1 .
The order of the columns is arbitrary as long as it is chosen
consistently. We use the reverse cyclical ordering, as proposed
in [1]. The r-mode product between a tensor A and a matrix
U is written as A ×r U . It is computed by multiplying all
r-mode vectors of A with U . In other words, [A×r U ](r) =
U · [A](r). The r-rank of a tensor A is the rank of the r-mode
unfolding matrix [A](r). The tensor IR,d is an R-dimensional
identity tensor of size d× d× . . .× d, which is equal to one
if all R indices are equal and zero otherwise.

II. DATA MODEL

In this section we introduce the data model for both
the matrix-based and the tensor-based subspace estimation.
To this end, we start with the non-adaptive case where the
subspaces are estimated once, based on N observations in a
stationary window. We consider a linear mixture of d sources
superimposed by additive noise, which can be expressed as

X = A · S +W . (1)

Here, X ∈ C
M×N is the matrix of observations from M

channels at N subsequent time instants, A ∈ C
M×d is the

unknown mixing matrix, S ∈ C
d×N contains the unknown

source symbols, and W represents the additive noise samples.
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Then, the SVD of X can be expressed as

X =
[
Ûs Ûn

]
·

[
Σ̂s 0

0 Σ̂n

]
·
[
V̂s V̂n

]H
, (2)

where the columns of Ûs ∈ C
M×d represent an orthonormal

basis for the estimated signal subspace, i.e., span{Ûs} ≈
span{A}.

We can arrange the elements of the matrix X ∈ C
M×N

into a tensor X ∈ C
M1×M2...×MR×N , where M = M1 ·

M2 . . . ·MR. While such a rearrangement is always possible
it only provides a benefit if the actual underlying signal has a
corresponding multidimensional structure, e.g., it resembles a
signal sampled on a multidimensional lattice. These dimen-
sions can for instance relate to space (1-D or 2-D arrays
at transmitter or receiver), frequency, time, or polarization,
depending on the application. The corresponding tensor-valued
data model takes the following form [3]

X = A×R+1 S
T +W , (3)

where A ∈ C
M1×M2...×MR×d and W ∈ C

M1×M2...×MR×N

represent the mixing tensor and the noise tensor, respectively.
Since (3) is a rearranged version of (1), the corresponding
quantities are linked via the relations X = [X ]

T
(R+1), A =

[A]
T
(R+1), and W = [W ]

T
(R+1), respectively. As shown in [3],

based on (3) we can define a tensor-based subspace estimate
by computing a truncated Higher-Order SVD (HOSVD) [1],

X ≈ Ŝ
[s]

×1 Û
[s]
1 ×2 Û

[s]
2 . . .×R+1 Û

[s]
R+1, (4)

where Û
[s]
r ∈ C

Mr×pr has unitary columns and denotes the
matrix of the estimated r-mode singular vectors. Moreover, pr
is the r-rank of the mixing tensor A and Ŝ

[s]
∈ C

p1×p2...×pR+1

represents the truncated core tensor. Based on the HOSVD, an

improved signal subspace estimate is given by
[
Û

[s]
]T
(R+1)

∈

C
M×d, where Û

[s]
is [3]

Û
[s]

= Ŝ
[s]

×1 Û
[s]
1 ×2 Û

[s]
2 . . .×R Û

[s]
R ×R+1 Σ̂

−1
s . (5)

Compared to the tensor-based subspace estimation in [3], the
multiplication with Σ̂

−1
s represents only a normalization which

we introduce to simplify notation later on.

As discussed in [3], (5) provides a better subspace estimate
than Ûs if and only if A is r-rank deficient in at least one
mode r = 1, 2, . . . , R, i.e., pr < Mr, An example where this
assumption is fulfilled is given by R-D harmonic retrieval [3],
where we consider a superposition of d harmonics samples on
an R-D lattice. This gives rise to a mixing matrix A and a
mixing tensor A of the following form

A = A1 �A2 � . . . �AR (6)
A = IR+1,d ×1 A1 ×2 A2 . . .×R AR, (7)

where Ar ∈ C
Mr×d represents the mixing matrix in the r-

th mode. In this case we have pr ≤ d and, therefore, the
tensor-based subspace estimate is superior to the matrix-based
subspace estimate if d < Mr for at least one r = 1, 2 . . . , R.
However, there are applications with r-rank deficiencies where
the observed signal obeys (3) but not (7), for instance, the
tensor-based blind channel estimation scheme in [9].

III. TENSOR SUBSPACE ESTIMATION VIA STRUCTURED
PROJECTIONS

At first sight (5) suggests that in order to track the signal
subspace, we need to track the r-mode singular vectors as well
as the core tensor. However, it can be shown that tracking
the core tensor is indeed unnecessary, since the tensor-based
subspace estimate can be computed from the matrix-based
subspace estimate via a structured projection which does not
involve the core tensor. This was first pointed out in [8] for
the 2-D case. However, it can be generalized to an arbitrary
number of dimensions. This claim is summarized in the
following theorem:

Theorem 1. The HOSVD-based subspace estimate can be
computed by projecting the unstructured matrix-based sub-
space estimate obtained via the SVD onto a Kronecker struc-
ture in the following manner[

Û
[s]
]T
(R+1)

=
(
T̂1 ⊗ T̂2 . . .⊗ T̂R

)
· Ûs, (8)

where T̂r = Û
[s]
r · Û

[s]H

r is a projection matrix onto the space
spanned by the r-mode vectors.

Proof: To show the identity (8) we first need to eliminate

the core tensor in (5). This is achieved by observing that Ŝ
[s]

can be computed from X via

Ŝ
[s]

= X ×1 U
[s]H

1 . . .×R+1 U
[s]H

R+1. (9)

Substituting (9) into (5) yields

Û
[s]

= X ×1 T̂1 . . .×R T̂R ×R+1

(
Σ̂

−1
s · Û

[s]H

R+1

)
. (10)

Expanding the (R+ 1)-mode unfolding of (10) gives[
Û

[s]
]
(R+1)

= Σ̂
−1
s · Û

[s]H

R+1 · [X ](R+1)

(
T̂1 ⊗ T̂2 . . .⊗ T̂R

)T

.

Therefore, it remains to be shown that Σ̂−1
s ·Û

[s]H

R+1·[X ](R+1) =

Û
T

s . This is achieved by observing that [X ](R+1) = XT

and therefore, Û [s]
R+1 = V̂ ∗

s (as defined in (2)). Consequently,

[X ]
T
(R+1) · Û

[s]∗

R+1 · Σ̂
−1
s = X · V̂s · Σ̂

−1
s = Ûs, where the last

step also follows from (2).

Equation (8) provides the central idea behind the
TeTraKron framework we introduce in this paper. It shows
that the tensor-based subspace estimate can be understood
as a projection of the unstructured matrix-based subspace
estimate onto the Kronecker structure inherent in the data.
It also shows that for all modes where pr = Mr we have
T̂r = Ir, i.e., no projection is performed. Another consequence
we can draw from (8) is that there is no need to compute (or
track) the core tensor. We can find the tensor-based subspace
estimate only based on the r-mode subspaces contained in
Û

[s]
r . These are the subspaces obtained from the r-mode

unfoldings of X , which are again matrices. Therefore, any
matrix-based subspace tracking scheme can be applied to track
these subspaces as well.

Consequently, the main idea can be summarized as follows:
In addition to tracking the subspace of the matrix X (which
is the same as tracking the row space of the (R + 1)-mode
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unfolding), we apply the same tracking algorithm to all r-
mode unfoldings of the tensor which satisfy pr < Mr for
r = 1, 2, . . . , R in parallel. Note that even though this seems
to increase the complexity by a factor equal to the number of
modes we track, all these trackers can run in parallel which
facilitates an efficient implementation. After each step, the
tensor-based subspace estimate can be recombined via (8).

However, this recombination requires O
{
M2 · d

}
multi-

plications, i.e., it is quadratic in M , which is undesirable. To
lower the complexity, we rewrite (8) as[

Û
[s]
]T
(R+1)

= U
[s]
Kron · ˆ̄U s, (11)

where U
[s]
Kron = U

[s]
1 ⊗ . . . ⊗ U

[s]
R ∈ C

M×dR

and ˆ̄U s =

U
[s]H

Kron · Û s ∈ C
dR×d assuming pr = d ≤ Mr, for r =

1, 2, . . . , R. Note that the matrix product in (11) requires only
O
{
M · dR

}
multiplications, i.e., it is linear in M . Moreover,

(11) can be used for tensor-based subspace tracking as well:
we track U

[s]
r for r = 1, 2, . . . , R by applying matrix-based

subspace tracking schemes to all unfoldings, then project our
M -dimensional observations into a lower-dimensional space
by premultiplying them with U

[s]H

Kron ∈ C
dR×M and finally run

a matrix-based subspace tracker on the lower-dimensional data
to track the d-dimensional subspace ˆ̄U s ∈ C

dR×d.

TeTraKron allows to readily extend arbitrary matrix-based
subspace tracking schemes to tensors which yields an im-
proved estimation accuracy as we demonstrate in Section V.
Therefore, we obtain novel tensor-based subspace trackers
by building on known algorithms, which is a particularly
attractive feature of the TeTraKron framework. In addition to
running these trackers on all unfolding in parallel and recom-
bining the signal subspace estimate via (8) or (11), the only
modification we have to apply to the matrix-based subspace
tracking schemes is the following: Typically, it is assumed
that the observation matrix X is augmented by a new column
x(n) with every new snapshot n. For the r-mode unfoldings,
every new snapshot generates not only one but several new
columns. For instance, for the 1-mode unfolding we obtain∏R

r=2 Mr new columns, each of size M1. This new batch of
columns can be processed sequentially, or, by modifying the
tracking schemes, also in one batch. We demonstrate such a
modification using the example of the PAST algorithm in the
next section.

IV. EXAMPLE: TENSOR-BASED PAST/PASTD

In this section we provide one example of how the
TeTraKron framework can be used to devise tensor-based sub-
space tracking schemes. Since TeTraKron allows us to extend
an arbitrary matrix-based subspace tracking scheme to the
tensor case we choose the simple but widely used projection
approximation subspace tracking (PAST) algorithm [11]. For
notational simplicity, we focus on the R = 2-dimensional case,
i.e., our data tensor X is of size M1 ×M2 ×N .

The PAST algorithm for tracking the signal subspace is
summarized in Table I, where x(n) is the new measurement
vector at time n, P (n) corresponds to the inverse of the cor-
relation matrix of the projected vector y(n) = ÛH

s (n) · x(n),
which is approximated as y(n) = ÛH

s (n−1)·x(n). Moreover,
g(n) is the gain vector and β the forgetting factor of the

P (0) = Id×d, Ûs(0) = IM×d

FOR n = 1, 2, . . . DO

y(n) = Û
H

s (n − 1) · x(n)

h(n) = P (n − 1) · y(n)

g(n) = h(n)/
(
β + y

H
(n) · h(n)

)

P (n) = β
−1

· Tri{P (n − 1) − g(n) · h
H
(n)}

e(n) = x(n) − Ûs(n − 1) · y(n)

Ûs(n) = Ûs(n − 1) + e(n) · g
H
(n)

END

TABLE I. SUMMARY OF THE PAST ALGORITHM [11].

underlying RLS procedure. Finally, e(n) is the approximation
error and IM×r symbolizes the first r columns of an M ×M
identity matrix.

In the TeTraKron extension of PAST we apply the same
algorithm to X = [X ]

T
(3) and to [X ](1) as well as [X ](2) in

parallel. With each new observation vector x(n) ∈ C
M1·M2×1

we obtain a new matrix of observations for the 1-space and
the 2-space of X which is given by X̃(n) ∈ C

M1×M2 for
[X ](1) and X̃T(n) for [X ](2). Note that X̃(n) is a rearranged

version of x(n) which satisfies vec
{
X̃(n)

}
= x(n). Since

PAST is based on RLS it can be modified to process the entire
new batch of observations at the same time. For instance, the
modified update equations for the 1-mode unfolding become

Y1(n) = Û
[s]H

1 (n− 1) · X̃(n) (12)
H1(n) = P1(n− 1) · Y1(n) (13)

G1(n) = H1(n) ·
(
β · IM2

+ Y H
1 (n) ·H1(n)

)−1
(14)

P1(n) = β−1 · Tri{P1(n− 1)−G1(n) ·H
H
1 (n)} (15)

E1(n) = X̃(n)− Û
[s]
1 (n− 1) · Y1(n) (16)

Û
[s]
1 (n) = Û

[s]
1 (n− 1) +E1(n) ·G

H
1 (n). (17)

Note that the inverse of the d×d correlation matrix of Y1(n),
P1(n), can be directly calculated

P1(n) = C−1
yy1

(n) = (βCyy1
(n−1)+Y1(n)Y

H
1 (n))−1, (18)

leading to a reduced complexity when d < M2. Then G1(n)
is alternatively updated as

G1(n) = P1(n)Y1(n), (19)

i.e., equations (13), (14), and (15) are replaced by (18) and
(19).

In [11], a deflation-based version of PAST (PASTd) with
even lower complexity is proposed. This algorithm is also
based on RLS and can hence be modified in the same manner.

V. SIMULATION RESULTS

In this section we demonstrate the performance of the ten-
sor extension of PAST and PASTd achieved via the proposed
TeTraKron framework. To this end, we choose a simulation
scenario that represents an extension of the one shown in [11]
to R = 2 dimensions. We consider a Uniform Rectangular
Array (URA) with d = 3 impinging wavefronts. The first two
sources are moved by changing their spatial frequencies (direc-
tion cosines) as a function of the time index n = 1, 2, . . . , N
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Fig. 1. Three moving sources on a 9× 9 URA at an SNR of 0 dB.
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Fig. 2. Three moving sources on a 7× 7 URA at an SNR of 0 dB.

according to

μ1[n] = 0.3− 0.1 · t[n], μ2[n] = 0.2 + 0.1 · t[n],

ν1[n] = 0.2 + 0.1 · t[n], ν2[n] = 0.2 + 0.1 · t[n],

for t[n] = n−1
N−1 , whereas the third source remains stationary

at μ3 = ν3 = 0.1. Therefore, for n close to N/2 the first and
the second source cross. The n-th observed snapshot is given
by x[n] = A[n] ·s[n]+w[n], where A[n] is the array steering
matrix for the current source positions μi[n], νi[n], i = 1, 2, 3,
and the source samples s[n] as well as the noise samples w[n]
are drawn from a zero mean circularly symmetric complex
Gaussian distribution with variance one (SNR = 0 dB). We
choose the forgetting factor β = 0.97. Similar to [11], we
compare the algorithms based on the Largest Principal Angle
(LPA) between the true and the estimated signal subspace since
the LPA provides a measure for the agreement of the subspaces
which is invariant to the particular choice of the basis.

Figure 1 shows the LPA for a 9 × 9 URA. The curve
labeled “PAST” refers to the original matrix-based PAST al-
gorithm from [11] whereas TeTraKron-PAST and TeTraKron-
PAST II refer to the tensor extension of PAST via the pro-
posed TeTraKron framework based on (8) and the reduced-

complexity version (11), respectively. For reference we display
two curves labeled “SVD” and “HOSVD” where the entire
matrix/tensor of observations1 up to the current snapshot n
is used to calculate a subspace estimate via the SVD and the
HOSVD, respectively. In Figure 2 we replace PAST by PASTd.
Moreover, we change the array size to a 7×7 URA to demon-
strate that the tensor gain is present for different array sizes.
Both simulation results show that the tensor-based subspace
tracking algorithms outperform the matrix-based algorithms, as
expected. We also observe that the reduced-complexity version
based on (11) adapts slightly slower than the one based on (8).

VI. CONCLUSIONS

In this paper we have proposed the Tensor-based subspace
Tracking via Kronecker structured projections (TeTraKron)
framework. TeTraKron allows to extend arbitrary existing
matrix-based subspace tracking schemes to the tracking of the
HOSVD-based subspace estimate. Therefore, compared to pre-
vious matrix-based subspace tracking schemes, the subspace
estimation accuracy is improved. The extension is based on an
algebraic link between matrix-based and tensor-based subspace
estimates via a Kronecker structured projection. Therefore,
matrix-based subspace tracking schemes are applied to all
tensor unfoldings and there is no need to track the core
tensor. We have proposed a low-complexity approach for the
recombination of the separate subspaces into one final estimate
which is achieved in linear time. As an example, we have used
the TeTraKron framework to extend the PAST and the PASTd
algorithm to tensors and have demonstrated the enhanced
subspace estimation accuracy via numerical simulations.
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