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Exploiting information geometry to improve the
convergence of nonparametric active contours
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Abstract—In this paper we seek to exploit information geom-
etry in order to define the Riemannian metric of the manifold
associated with nonparametric active contour models from the
exponential family. This Riemannian metric is obtained through
a relationship between the contour’s energy functional and the
likelihood of the categorical latent variables of a mixture model.
Accordingly contours form a statistical manifold equipped with
a natural metric which is determined by the model’s Fisher
information matrix. Mathematical developments show that this
matrix has a closed-form analytic expression and is diagonal.
Based on this, we subsequently develop a Riemannian steepest
descent algorithm for the active contour, with application to
image segmentation. Because the proposed method performs
optimisation on the parameter’s natural manifold it attains
dramatically faster convergence rates than the Euclidean gradient
descent algorithm commonly used in the literature. A segmen-
tation experiment on an ultrasound image is presented and
confirms that the proposed natural gradient algorithm converges
extremely fast and delivers accurate segmentation results in few
iterations.

Index Terms—active contours, level sets, variational methods
on Riemannian manifolds, information geometry.

I. INTRODUCTION

Active contour (AC) models are a powerful framework for
estimating the boundaries of an object within a given image. In
this framework, contours are represented as curves that evolve
subject to certain constraints to minimize an energy functional.
This paper considers nonparametric ACs, a particularly useful
class of segmentation methods where curves are represented
implicitly as the zero level set of a surface that evolves with
a fictitious time ¢ [1]. In particular, we focus on region-based
ACs that evolve according to the statistical characteristics
of the object of interest and the background, as opposed to
evolving according to image gradients or edges.

Region-based nonparametric ACs where first postulated in
the seminal work of Chan and Vese [2], which defined an
active contour for images composed by a foreground and back-
ground with Gaussian statistics. That work was subsequently
generalized to images with other specific statistics, such as
Rayleigh [3], gamma [4], Weibull [5] and Laplace [6]. A
unified framework for AC models for distribution from the
exponential family was finally proposed in [7].

Inherent in active contour segmentation problem is the
solution of the Euler-Lagrange differential equations that guide
the contour’s evolution. In most applications these are solved
using standard first-order Euler methods which are relatively
simple to derive and implement. However, it is well known
that Euler’s method can take a large number of iterations
to converge. This drawback has recently motivated numerous
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papers in the literature that study more advanced algorithms
to solve active contour (a survey of the state-of-the-art has
been presented in [8]). However, these fast algorithms have
been designed for the Chan-Vese active contour and cannot be
directly applied to other contours from the exponential family.

This paper presents a general Riemannian optimisation
method for nonparametric ACs from the exponential family
and is structured as follows. In the next section we intro-
duce the underlying mathematical concepts in region-based
active contour segmentation and briefly highlight some of
the difficulties that our approach seeks to address. In Sec-
tion III we develop an information geometry framework for
active contours from the exponential family and propose a
Riemannian steepest descent method to compute the contour’s
evolution. More precisely, we derive a smooth natural gradient
descent algorithm [9] for nonparametric active contour, with
application to image segmentation. Following on from this
in Section IV we present some results illustrating the power
of the approach and contrast the performance on alternative
existing approaches. Finally we draw some conclusions and
discuss potential extensions of the approach.

II. REGION-BASED LEVEL SET SEGMENTATION

Let © be a bounded subset of RP and I : Q@ — RP a
D-dimensional image composed by p channels (i.e., pixels
take their values in RP). Moreover, I is assumed to be
constituted by a foreground Q2 and a background Q) p, each
characterised its own statistical distribution. Precisely, it is
assumed that image pixels are distributed according to the
following statistical model

I(x) ~ f(OF)
I(z) ~ f(0p)
where 0 and 0 g are the statistical parameters associated with

the foreground and background respectively and where f is an
arbitrary distribution from the natural exponential family, i.e,

ifx e Qp

ifxeQp M

F(I(@);0) = h(I(z)) exp [67S(I(@)) — AB)] ()

with sufficient statistic S(I(x)) and log-normalizer A(6).
Note that (2) comprises most distributions used in sig-
nal and image processing such as the normal, exponential,
gamma, Poisson, Rayleigh, binomial, categorical, log-normal
and Dirichlet.

Following an active contour approach, the segmentation of
I is addressed by finding a curve C' C Q that minimizes the
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following energy functional [7]:

¢ = argmin —/ log f (I(x);01) dx
c inside(C)

3)
— / log f (I(x); 02) dx.
outside(C)

For simplicity we assume that 8; and 6, are known a-priori.
If this is not the case then equation (3) is typically minimized
by updating iteratively C, 8, and 0-. Note that for a fixed
C the exact minimization of (3) with respect to 81 and 85 is
straightforward by using maximum likelihood estimators.

This paper considers nonparametric contours where the
curve C € () is defined implicitly as the zero level set of
a Lipschitz function ¢ : 2 — R, such that

C = {(=):¢(x)=0} ©)
inside(C) = {(x): ¢(x) > 0} 5)
outside(C) = {(x): ¢(x) <0} (6)

and the energy minimization problem (3) is restated as follows

)

¢ = argmin —F(I; ¢)
@

where

F(I;¢) 2~ / log f (I(x): 61) H(d(x))dx
(8)

+ [ 1ogf (1(x:62) H(~o(e))de
Q

and where H (-) denotes the Heaviside function. The functional
optimisation problem (7) can be solved by introducing a
fictitious time ¢ and solving the associated Euler-Lagrange
differential equations 0,¢ = 04 F', which lead to the following
flow for ¢

ho(x) = =6 (¢(z)) [log f (1(x);01) — log f (I1(x); 02)] (9)

where the §(-) is the Dirac delta function and where 04 F is
the 1st variation of F' with respect to ¢.

In practice, equations (8) and (9) must be computed over
a discrete space-time grid and using sampled functions I =

(I,...,Iy)and ¢ = (¢1,...,0n). Equation (8) becomes
N
F(I;¢) = (log f (I;;61) H(¢:) + log f (I;;02) H(—¢;)) .
= (10)
Similarly, equation (9) is now a discrete flow
¢ =" + 0V F(L ') (1D

where 7 is the time step, which is bounded by the Courant-
Friedrich-Levy (CFL) stability condition, and the gradient
V,F(I;¢") approximates 04 F. This approximation leads to
the following iterative algorithm

i = 0f + nVF (I ¢") (12)
with

VoFe(L ¢") = 6-(¢y) (log f (Ii301) —log f (Ii302)) (13)

which is widely used within the level set community (for
numerical stability, AC algorithms use a smooth approximation
d¢(-) of Dirac’s delta function §(-) [2]).

As explained previously, this iterative algorithm is known
to have several shortcomings. In particular, it can take a large
number of iterations to converge, especially in cases where the
gradient V4 F(I; @) is strongly anisotropic (depends on the
direction) (see [8] for more details). In such cases, precondi-
tioning, which changes the geometry of the parameter space,
can improve convergence dramatically [8], [9].

The limitations of (12) have motivated numerous papers in
the literature that study alternative methods to solve ACs. Most
recent papers interpret (12) as a steepest descent problem in the
Euclidean space RV and investigate alternatives based on more
sophisticated optimisation algorithms. Indeed, most state-of-
the-art algorithms are steepest descent methods on alternative
spaces or manifolds whose inner-products induce favorable
properties on gradient flows. For instance, some papers pro-
pose to solve (12) in a Sobolev space because its inner product
acts as a smoothing operator inducing favorable regularity
properties on the contour [10], [11]. Alternatively, Bar et al.
presented a generalized Newton method that combines an
anisotropy reducing inner-product derived from the energy
functional’s Hessian with a smoothing inner product obtained
from a non-canonical space [12]. Bar et al. went further by
highlighting two important open problems “the selection of the
most appropriate inner product associated with a particular
functional” and “to incorporate non flat manifolds instead of
Euclidean spaces”. These problems were recently addressed
in [8], where the authors used information geometry to derive
the statistical manifold associated with the Chan-Vese active
contour and subsequently proposed a Riemannian steepest
descent methods based on the intrinsic metric tensor of that
manifold. Experiments reported in [8] show that the resulting
algorithm converges extremely fast and produces accurate
segmentation results in only a few iterations. Unfortunately
these state-of-the-art optimisation methods [8], [11], [12] have
been developed for the Chan-Vese active contour and cannot
be directly applied to active contours of the exponential family.

III. PROPOSED OPTIMISATION METHOD

This section presents a general Riemannian steepest descent
method that can be applied to any active contour of the
exponential family. In a manner akin to [8], the method is
derived by first using information geometry to obtain the
statistical manifold associated with the active contour and then
proposing a Riemannian steepest descent method based on the
intrinsic metric tensor of that manifold. Note that the method
presented here includes as a particular case the Riemannian
steepest descent proposed in [8] for the Chan-Vese AC.

We begin by noting that algorithms for minimizing the
energy functional (10) can also be interpreted as methods for
maximizing the following likelihood

fIe) = 11 fusen I fui:62)

{i:p; >=0} {i:p; <0}

(14)
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where f(I;;0) has been defined in (2). Based on this, we
propose to derive the Riemmanian metric of the statistical
manifold M whose points are the distributions f(I;¢),
parametrized by ¢. This allows us to compute gradient flows
on (the tangent spaces of) M and to define a steepest descent
on this manifold. This algorithm, also known as natural
gradient descent, generally exhibits very good convergence
properties [9] and has been successfully applied to the Chan-
Vese AC in [8].

According to information geometry, the natural or intrinsic
metric of M is the collection of inner products given by the
Fisher information matrix (FIM) [13]

2
00i0;

where E(...|¢) denotes the expectation with respect to the
distribution f(I; ¢). Precisely, at any given point ¢, the mani-
fold M can be approximated locally by an Euclidean tangent
space T, endowed with the inner product (¢’, G (@) ¢).

Once G (¢) is known, a steepest descent on M to optimise
F is defined as

P = ¢t + G (¢) ' V(L ¢")

where G (¢) ™' V4F(I; ¢') is the gradient of F on Ty (see
[8] for more details).

Unfortunately, deriving the FIM associated with the likeli-
hood (14) is not possible because H(-) is not differentiable.
We propose to define an alternative FIM by using the following
smooth approximation of H(-) introduced in [2]

1 ( 2 s)
— (1 4+ —arctan—
2 s €

which is widely accepted within the level set community. Thus,

(Ge (¢))(i,j) =
52
-F <5¢ b

- <6¢> 5o

(G (D)) ﬁE( log [f (I; #)] |¢> (15)

(16)

H.(s) = (17)

lzlogf 1;,01)H.(; )] ‘qb)

[Zlogf 1;,02)H.(—¢;)

(18)

By developing the derivatives in (18) we observe that G. is
diagonal and is
(G- () 1) = — E [log £(1:;01)3L(00) |

- FE [logf(fz,92) (=) @}

19)

if + = j and
(G- (¢))(i,j) =0

otherwise, where EX(...|$;) denotes the expectation with re-
spect to the marginal likelihood

oy (T 61)
f(1i7¢)—{ f(Ii;az)

if ¢; >0

if ¢; <0 (20)

)

and where
—2€ x

%) = e
x) = —d.(x), if i = j then
f(fi,91)>
[, 02)

Equation (21) can be further simplified by noting that the
expectations in (21) can be expressed in terms of Kullback-
Leibler divergences [14], i.e.,

Given that 0. (—

(G2 (@) = 0100 s

¢>1} - @n

1860 D (FOIf(82)) if 65 > 0
<Gf(¢”<ivﬂ‘>{ ~Iso)ipalrienNlren) e <o

Since (@) belongs to the exponential family, equation (22)
can also be expressed in terms of Bregman divergences that
admit closed-form expressions [14]

_ | —10.(¢i)| Bf(62]|61) if ¢; >0
Gy ={ ~Flbielon o zo @
where
B;(0:]/01) £ A(8y) — A(81) — (82 — 02, VA(B:)) (24)

and where it is recalled that A(@) is the logarithm of the
normalizing constant of f(8) defined in (2). Thus, for energy
functionals of the form of (10), associated with distributions
from the exponential family (2), G¢ (¢) is diagonal, has a
closed-form expression and is trivial to compute and invert.

Moreover, using (23) in equation (16) leads to the following
Riemannian steepest descent iteration

(¢°) VoF.(L;¢")

where V4 F,(I; @') has been defined in (13). Note that this
natural gradient algorithm preconditions the Euclidean gradi-
ent with G;l (qbt) to ensure isotropic convergence (see [8],
[9] for more details).

Finally, we now need to modify (25) so that it will promote
smooth solutions. This regularization of ¢ improves signif-
icantly segmentation results by introducing prior knowledge
about image structure, i.e., pixels belonging to the foreground
and background are organized in spatial groups (as opposed
to being randomly distributed across the image). In a manner
akin to [11], [12] and [8], we propose to regularize ¢ by
smoothing gradient flows. Precisely, we define the following
iterative algorithm based on a smooth natural gradient [8]

p't! = (¢") VoF:(I; ")

where H, is a smoothing operator. In this work we set
H, = Toeplitz(h,), where h,(s,u) = 27rla26Xpd[_ 822?;;‘2}
is a Gaussian kernel of scale o. The parameter o determines
the width of the Gaussian kernel and therefore the amount
of smoothness enforced by H,. More details regarding the
motivation for choosing this particular smoothing operator and
about the selection of ¢ can be found in [8].

ot = ot + G (25)

¢' +nH,G." (26)
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IV. EXPERIMENTAL RESULTS AND OBSERVATIONS

Here we demonstrate the proposed methodology on a chal-
lenging image segmentation problem for which Euler’s method
converges very slowly. Specifically, we consider a Rayleigh
AC model with application to ultrasound image segmentation
[3] (additional experiments using the Chan-Vese AC can be
found in [8]). To the best of our knowledge the Euler method
proposed in [3] is the only algorithm that has been applied to
the Rayleigh AC. In order to apply (26) to this problem we
have evaluated (23) using the log-normalising constant of the
Rayleigh distribution. To guarantee that the comparisons are
fair both algorithms use the same initialization and step size
(we used n = 0.1 as recommended in [3]).

Fig. 1(a) shows a B-mode ultrasound image of in-vivo
human dermis the dermis-hypodermis junction has been an-
notated approximately by an expert (coarse white line). The
region of interest used in the experiments is depicted in yellow.
Fig. 1(b) shows in coarse red the segmentation results obtained
with our method and in yellow those obtained with [3].

(b)

Fig. 1. Comparison of our method (red) with Euler’s method (yellow)
on a Rayleigh AC with application to ultrasound image segmentation.

We observe the proposed method is robust to speckle
noise and clearly estimates the dermis-hypodermis junction.
More importantly, the proposed method converged in only 18
iterations, which took 0.34 seconds, whereas Euler’s method
required 9860 iterations and 269 seconds to produce a stable

solution (experiments computed on an Intel Core 2 Duo
@2.1 GHz processor workstation running MATLAB R2010b).
This dramatic difference in speed results from the fact that
proposed method takes steps along the steepest directly on
the parameter’s intrinsic manifold, as opposed to using the
default Euclidean gradient. Finally, note that this extremely
fast convergence is in agreement with the experiments reported
in [8].

V. CONCLUSION

This paper has shown how information geometry can be
used to define the Riemannian metric of the statistical manifold
associated with nonparametric active contour models. Through
appropriate mathematical developments we have shown that
the Fisher Information matrix, which determines the natural
metric of the statistical manifold is diagnonal and invertible.
This insight enables a fast converging segmentation method-
ology which we have demonstrated on an ultrasound image
segmentation problem where a 2 orders of magnitude increase
in segmentation speed is achieved.
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