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Abstract—Many examples of multi-way or tensor-valued data,
such as in climate studies, neuroimaging, chemometrics, and
hyperspectral imaging, are structured meaning that variables
are associated with locations. Tensor decompositions, or higher-
order principal components analysis (HOPCA), are a classical
method for dimension reduction and pattern recognition for this
multi-way data. In this paper, we introduce novel methods for
Functional HOPCA that decompose the tensor data into compo-
nents that are smooth with respect to the known data structure.
Through numerical experiments we demonstrate the comparative
advantages of our methods for smooth signal recovery from
multi-way data.

Keywords-tensors, higher-order PCA, functional data analysis,
Tucker decomposition, CP decomposition.

I. INTRODUCTION

Tensor decompositions, sometimes referred to as Higher-
Order Principal Components Analysis (HOPCA), are used for
dimension reduction, data compression, pattern recognition,
exploratory data analysis, and visualization of multi-way data
[1]. With the advent of new technologies, multi-way data is
becoming more common; and, several examples of this data
are structured, meaning that variables along one or more mode
are associated with a location. Consider, for example, multi-
subject neuroimaging data such as from fMRI, EEG or MEG
that can be arranged as a multi-way array of subjects by
brain locations by time points; variables along the latter two
modes are clearly structured. Thus, factors that are smooth
with respect to the data structure would lead to improved
signal recovery and more interpretable factors. For matrix
data, several have achieved smooth factors in the context of
PCA through regularization, an approach termed Functional
PCA (FPCA) [2; 3]. Our objective is to develop a framework
that extends Functional PCA to decompose a tensor such that
one, two, or all factors are smooth with respect to the known
structure.

In this paper, we develop several novel approaches to formu-
lating Functional HOPCA that are based on algorithms in the
FPCA or tensor decomposition literature: Functional Higher-
Order SVD (HOSVD), an extension of the HOSVD algorithm
for Tucker decompositions of [4]; Functional Higher-Order
Orthogonal Iteration (HOOI), an extension of the HOOI or
Tucker-ALS algorithm of [5]; Functional Tucker, an exten-
sion of the half-smoothing approaches to FPCA of [3; 6];
Functional CP-ALS, an extension of the CP-ALS algorithm
of [7; 8] for functional factors; and finally, the Functional

CP-TPA (Tensor Power Algorithm), an optimization-based
approach that is an extension of the two-way FPCA method
of [6] using the greedy TPA algorithm of [9; 10]. We present
a thorough numerical study to compare these approaches and
classical tensor decomposition methods; results indicate that
some of our methods offer substantial improvements for signal
recovery of smooth underlying higher-order factors.

II. FUNCTIONAL HIGHER-ORDER PCA

First, we briefly review notation. Tensors are denoted by X ,
matrices X, vectors x, and scalars x. For simplicity, we will
only consider 3-mode tensors in this paper and always denote
the mode dimensions as X n×p×q; our results can be easily
extended to tensors of higher orders. Matricizing or stacking a
tensor along a particular mode is denoted as X(1) which would
be of dimension n× pq. We will also employ several types of
multiplication: the outer product, x ◦y = xyT ; multiplication
along a tensor mode, X ×1 Y, denotes regular multiplication
of Y along mode one of X ; and the Khatri-Rao product
X�Y is the Kronecker product of the columns of X and
Y.

Suppose we observe data, X ∈ Rn×p×q, and assume
that this data arises from a low-rank model, either the
CANDECOMP / PARAFAC (CP) model [7; 8]: X =∑K

k=1 dk uk ◦vk ◦wk +ε, or the Tucker model [4]: X =
D×1 U×2 V×3 W +ε, where D is the 3-mode tensor core;
in both models, ε denotes i.i.d. additive noise. In addition to the
classic CP and Tucker models, we assume that one or more of
the factors are smooth with respect to the known data structure.
Thus, we assume that variables along one or more modes of
X arise as discretized functional curves, for example, pixels
in images or time points. Our goal in this paper is to develop
methods to estimate one or more smooth tensor factors. As
the case of three-way smooth factors is the most challenging,
we will develop our methods assuming data along all three
tensor modes arise as discretized functional curves; all other
combinations of smooth factors will be special cases of this
three-way approach.

Before introducing our methods for Functional HOPCA, we
first review methods for Functional PCA with matrix data.
There are many approaches to encourage smoothness in ma-
trix factorizations including basis expansions and smoothing
splines, reproducing kernel Hilbert spaces, and wavelet de-
compositions, but by far the most popular approach is a direct
method using generalized `2 regularization. First introduced
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by [2] and latter modified by [3], this method regularizes the
original variance maximization PCA criterion:

maximize
vk

vT
k XT Xvk subject to vT

k vk +αvT
k Ωvk = 1

& vT
k vj +αvT

k Ωvj = 0 ∀ j < k.

Here, Xn×p is the data matrix, vk is the p length kth FPC
factor, α ≥ 0 is a regularization parameter controlling the
amount of smoothness imposed on v, and Ω � 0 is a
p × p matrix that penalizes roughness in v. Examples of Ω
include the squared second or fourth differences matrix which
encourage smoothness by forcing second or fourth adjacent
elements in v to be close to each other in the `2 sense;
several other instances of Ω matrices that are often application
specific and can be used in this context are given in [11]. This
FPCA framework also has a desirable interpretation related
to smoothing: Letting S = (I + αΩ)−1 be the smoothing
matrix, then the above FPC solution can be obtained by
half-smoothing the data, X̃ = XS1/2, taking the SVD,
X̃ = ŨD̃Ṽ, and then half-smoothing the resulting PC factors,
V = S1/2 Ṽ. Later, [6] extended this approach to two-
way FPCA assuming both the row and column PC factors
are smooth by performing two-way half-smoothing; they also
elegantly show the mathematical criteria that is optimized by
the two-way half-smoothing procedure.

We are now ready to introduce our first set of methods
for Functional HOPCA which are based on the Tucker de-
composition model. The two most common algorithms to
estimate Tucker models are the Higher-Order SVD (HOSVD)
and Higher-Order Orthogonal Iteration (HOOI) or Tucker
Alternating Least Squares (ALS) algorithms [4; 5]. Both of
these methods proceed by matricizing the tensor along a mode
and performing PCA to estimate the Tucker factor for that
mode. The HOSVD takes U as the left singular vectors of
X(1), and takes V and W analogously. The HOOI is an
iterative procedure that sets U to the left singular vectors
of the matricized, projected tensor, (X ×2 V×3 W)(1), and
sets V and W analogously, iterating until convergence. To
estimate smooth Tucker factors then, one could simply replace
the SVD / PCA step in both the HOSVD and HOOI algorithms
with Functional PCA for matrix data as described above. This
yields our so-called Functional HOSVD and Functional HOOI
methods.

Another approach to estimating smooth factors in the Tucker
model is to extend the half-smoothing approach of [3; 6].
In particular, one could define a smoothing matrix for each
mode, Su, Sv, and Sw, and perform our so-called Functional-
Tucker method as follows: Half-smooth the tensor, X̃ =
X ×1 S1/2

u ×2 S1/2
v ×3 S1/2

w , take the Tucker decomposition,
X̃ = D̃×1 Ũ×2 Ṽ×3 W̃, and then half-smooth each of the
Tucker factors, U = S1/2

u Ũ, V = S1/2
v Ṽ, W = S1/2

w W̃.
Note that this approach is similar in spirit to the Smoothed
Tucker method of [12] which uses B-splines to perform itera-
tive smoothing. While [6] were able to show that two-way half
smoothing corresponds to directly optimizing a mathematical
criteria, our three-way extension does not. This results from

the fact that the Tucker model has a non-diagonal core. Thus,
our three methods to estimate Functional HOPCA via Tucker
models are algorithmic approaches achieved by extensions of
existing tensor algorithms.

We develop another algorithmic approach to Functional
HOPCA by extending the commonly used algorithm to es-
timate the CP decomposition, the CP-ALS algorithm. This
method estimates the CP model by iteratively regressing the
other factor matrices on the tensor matricized along the mode
of interest and then scaling the resulting factor [7; 8]. Since
each step is performed by least squares regression, one could
simply add a smoothing generalized `2 penalty as described
above to the regression problem to achieve smoothness in the
tensor factors. Consider, for example, the multi-factor penalty
tr(UT Ωu U) =

∑K
k=1 uT

k Ωu uk; then, one could solve the
following penalized regression problem to estimate a smooth
factor U:

minimize
U

||X(1)−U(V�W)T ||2F + αutr(UT Ωu U).

(1)

Note that the first term of the criterion is the same as that of
the CP-ALS algorithm [7; 8]. The solution to this problem is
obtained by the following:

Proposition 1: The solution to (1) is given by the solution
to the following Sylvester equation: U(V�W)T (V�W)+
αu Ωu U = X(1)(V�W).
Thus, our so-called Functional CP-ALS algorithm proceeds by
iteratively solving the above penalized regression problem (or
analogous versions for V and W), scaling the resulting factors
to have column-norm one, and repeating until convergence.
While it may seem that this algorithm solves the traditional
CP-ALS Frobenius-norm loss with additional penalties on
each of the factors, this is not the case due to the scaling
step that ensures numerically stable factors. See a discussion
in [6] for further details on the analogous result with matrix
data.

While we have introduced several new methods for esti-
mating Functional HOPCA, all of these approaches modify
existing algorithms and thus, do not directly optimize a
unified mathematical objective. Here, we introduce a novel
optimization-based method that extends the two-way FPCA
methods of [6] to multi-way data and is closely related to the
tensor power algorithm of [9; 10]. We consider estimating a
rank-one CP model one at a time in a greedy manner:

minimize
u,v,w

||X −u ◦v ◦w ||2F − ||u ||22||v ||22||w ||22

+ uT S−1
u uvT S−1

v vwT S−1
w w . (2)

This criterion is a direct extension of the two-way FPCA
objective in [6]. Notice that this problem is tri-convex problem
in the factors, meaning that it is convex in u with v and w
fixed and vice versa. Thus, we can consider optimizing (2)
one factor at a time. Since the objective is smooth, there exists
an analytical solution for each factor as given in Algorithm 1.
Additionally, notice that the factor updates are similar to those
of the tensor power algorithm (TPA) [9; 10], a higher-order
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extension of the power algorithm for computing eigenvalues.
Thus, we term this method the Functional CP-TPA.

Algorithm 1 Functional CP-TPA Algorithm

1) Initialize X̂ = X and norm-one vectors u, v, and w.
2) For k = 1 . . . K

a) Repeat until converge:

i) uk ←
Su(X̂ ×2 vk ×3 wk)

vT
k S−1

v vk wT
k S−1

w wk

.

ii) vk ←
Sv(X̂ ×1 uk ×3 wk)

uT
k S−1

u uk wT
k S−1

w wk

.

iii) wk ←
Sw(X̂ ×1 uk ×2 vk)

uT
k S−1

u uk vT
k S−1

v vk

.

b) Scale uk, vk, and wk to have norm-one.
c) dk ← X̂ ×1 uk ×2 vk ×3 wk.
d) X̂ ← X̂ − dk uk ◦vk ◦wk.

The following result shows that the Functional CP-TPA
method indeeds solves the unified objective (2):

Proposition 2: The rank-one Functional CP-TPA algorithm
converges to a stationary point of (2).

Proof: Taking the gradient of (2) with respect to each
factor, we see that the updates in Step 2 a) solve (2) for
each factor. Furthermore, since the objective is tri-concave in
the factors and each update is unique, we have that cyclical
updates converge to a stationary point [13].
Since this method solves for a single rank-one CP decom-
position at a time, multiple rank models can be estimated
in a greedy manner by subtracting the previously estimated
decomposition [9; 6; 10]. The simplicity and flexibility of
this approach, however, must be weighed against the fact
that greedy rank-one approximations can be sub-optimal [14].
Also, notice that while our method converges to a stationary
point, the quality of the solution depends heavily on initial val-
ues for the factors, as is the case with all tensor decomposition
methods [1].

We have presented several novel approaches to incorpo-
rating smoothness with respect to known data structure in
tensor decompositions using regularization. Overall, as the
Functional CP-TPA method solves a mathematical criterion,
it offers certain advantages such as guaranteed convergence,
optimality assurances, and a method of comparing the qual-
ity of different solutions. Computationally, the Functional
HOOI and Functional CP-ALS methods may be intractable
in high-dimensional settings as they involve repeatedly taking
eigenvalue decompositions of matricized tensors or solving
Sylvester equations respectively. Also, a consideration for
practical use of these methods is a data-driven way to de-
termine the appropriate amount of smoothing imposed on
each factor moderated by the regularization parameter, α.
Many methods such as cross-validation have been suggested
and can be used with any of our methods [3]. But, for the
Functional CP-TPA, an extension of the generalized cross-
validation (GCV) procedure of [6] can be used which leaves
out one tensor fiber at a time. The GCV criterion then has
an analytical form that can be estimated in a nested manner

within the alternating power updates for each CP factor.
Thus, this data-driven method for estimating the regularization
parameters has the advantage of being able to impose differing
amounts of smoothness on the different tensor modes.

III. NUMERICAL RESULTS

F-HOSVD F-HOOI F-Tucker F-CP-ALS F-CP-TPA
K = 1
I 0.104 0.355 0.160 1.402 0.141
III 0.898 2.016 0.870 5.81 1.705
V 0.096 0.400 0.126 2.572 0.392
VI 0.928 2.181 0.932 12.81 3.765
VII 125.8 575.9 117.7 8046 68.68
K = 2
I 0.129 0.690 0.227 3.533 0.269
III 0.963 2.853 1.014 41.77 1.067
V 0.130 0.728 0.242 3.602 0.780
VI 0.995 4.25 1.153 21.75 3.854
VII 122.3 944.2 117.5 8893 102

TABLE I
MEAN RUN TIME IN SECONDS.

We evaluate the comparative effectiveness of our proposed
Functional HOPCA methods through a series of numerical
experiments. Three-way data is generated from a rank-one
or rank-two CP model: X =

∑
k dk uk ◦vk ◦wk +ε for

ε ∼ i.i.d. N(0, 1) and signal strength d1 = 50 for K = 1
or d1:2 = [60 40] for K = 2. (Note that we simulate from
a CP model for comparison purposes as the Tucker model
is a special case with diagonal tensor core.) The norm-one
signal factors and data-dimensions varying according to seven
different scenarios: Data-dimensions are either 100×100×100
(scenarios I, III, V), 1000 × 50 × 50 (scenarios II, IV, VI),
or 5000 × 50 × 50 (scenario VII). Scenarios I - IV and VII
consider the case where only u is smooth, with u either a
sinusoidal curve (I, II, VII) or a Gaussian pulse (III, IV); v
and w are generated as random orthonormal vectors. Scenarios
V and VI consider the case where all factors are smooth: u
a sinusoidal curve, v a Gaussian pulse, and w a product of
two sinusoidal curves of different phases. For the rank-two
models, the orthogonal signal to the specified curve (i.e. a
cosine curve) was taken as the rank-two factor. Our roughness
penalty, Ω was taken as the squared second differences matrix,
as commonly used for smoothing of equi-spaced discretized
functional curves [11]. As all of our Functional HOPCA
methods have a tuning parameter, α, that controls the amount
of smoothing, we took α = n[.001, .01, .1, 1, 10] where n is
the appropriate data-dimension; results for the best performing
value of α are reported for each method.

In Table II, we report comparative results in terms of
subspace recovery for six simulation scenarios. We com-
pare the true generating subspace to that estimated by the
Tucker decomposition, CP decomposition, and our Functional
HOSVD, HOOI, Tucker, CP-ALS, and CP-TPA methods.
Mean and median results for 50 replicates are reported for
subspace recovery measured by 1− cos(∠(Û,U∗)), where ∠
denotes the principal angle between Û and U∗; thus, smaller
numbers indicate better signal recovery. Results indicate that
all functional HOPCA methods offer substantial improvements
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CP Tucker F-HOSVD F-HOOI F-Tucker F-CP-ALS F-CP-TPA
K = 1
I u 0.858 / 0.902 0.844 / 0.915 0.0466 / 0.0471 0.0192 / 0.0194 0.549 / 0.772 0.145 / 0.0175 0.0428 / 0.00687
II u 0.879 / 0.901 0.854 / 0.924 0.0593 / 0.0602 0.03 / 0.0301 0.702 / 0.857 0.238 / 0.0185 0.196 / 0.00946
III u 0.963 / 0.968 0.97 / 0.98 0.0816 / 0.0812 0.0708 / 0.0715 0.66 / 0.867 0.14 / 0.0304 0.0727 / 0.0168
IV u 0.968 / 0.972 0.957 / 0.966 0.0711 / 0.0707 0.0631 / 0.0627 0.504 / 0.781 0.0677 / 0.0285 0.0468 / 0.0123
V u 0.889 / 0.91 0.913 / 0.924 0.0454 / 0.0451 0.0191 / 0.0188 0.481 / 0.721 0.106 / 0.0192 0.0071 / 0.00702

v 0.918 / 0.951 0.936 / 0.957 0.0603 / 0.06 0.0294 / 0.0294 0.563 / 0.842 0.109 / 0.0201 0.0081 / 0.0081
w 0.905 / 0.935 0.913 / 0.932 0.0571 / 0.056 0.0262 / 0.0263 0.522 / 0.734 0.115 / 0.0207 0.0101 / 0.00983

VI u 0.972 / 0.978 0.978 / 0.982 0.0824 / 0.0816 0.0717 / 0.072 0.869 / 0.924 0.172 / 0.0469 0.0746 / 0.0167
v 0.934 / 0.957 0.931 / 0.937 0.926 / 0.939 0.0539 / 0.0539 0.913 / 0.963 0.141 / 0.0104 0.0697 / 0.0126
w 0.931 / 0.936 0.927 / 0.932 0.103 / 0.0941 0.0198 / 0.0192 0.847 / 0.906 0.141 / 0.0101 0.0627 / 0.0132

K = 2
I u 0.908 / 0.946 0.917 / 0.948 0.0393 / 0.0357 0.0108 / 0.0106 0.581 / 0.757 0.344 / 0.0299 0.105 / 0.0114
II u 0.923 / 0.935 0.938 / 0.946 0.898 / 0.92 0.0183 / 0.0176 0.826 / 0.911 0.318 / 0.0299 0.217 / 0.019
III u 0.981 / 0.985 0.978 / 0.98 0.0748 / 0.0738 0.0669 / 0.0294 0.601 / 0.886 0.333 / 0.055 0.176 / 0.0303
IV u 0.98 / 0.983 0.975 / 0.981 0.0332 / 0.0322 0.0575 / 0.02 0.547 / 0.759 0.39 / 0.0561 0.0375 / 0.02
V u 0.936 / 0.952 0.939 / 0.947 0.0746 / 0.0703 0.0235 / 0.0233 0.302 / 0.0127 0.307 / 0.0309 0.0109 / 0.0109

v 0.951 / 0.963 0.952 / 0.955 0.089 / 0.0891 0.0236 / 0.0229 0.321 / 0.0184 0.317 / 0.032 0.0159 / 0.0155
w 0.943 / 0.95 0.939 / 0.951 0.0928 / 0.0904 0.0242 / 0.0235 0.315 / 0.0184 0.316 / 0.0325 0.017 / 0.0172

VI u 0.983 / 0.983 0.979 / 0.984 0.0983 / 0.0989 0.132 / 0.0583 0.841 / 0.897 0.323 / 0.062 0.267 / 0.0319
v 0.957 / 0.96 0.955 / 0.965 0.944 / 0.957 0.0908 / 0.0148 0.881 / 0.936 0.286 / 0.0174 0.275 / 0.0372
w 0.951 / 0.958 0.945 / 0.949 0.319 / 0.225 0.0855 / 0.0121 0.818 / 0.873 0.282 / 0.0186 0.239 / 0.0139

TABLE II
MEAN / MEDIAN SUBSPACE RECOVERY SIMULATION RESULTS.

over the CP and Tucker decompositions for signal recovery of
smooth multi-way factors. Out of our methods, the Functional-
Tucker has markedly worse performance, along with the
Functional HOSVD in a couple of the simulation scenarios.
The Functional HOOI and CP-TPA methods consistently have
the best performance across all scenarios. Interestingly, there
is often a discrepancy between the mean and median subspace
recovery results for the Functional CP-ALS and CP-TPA
methods. Inspection of the replicates indicate that a handful
of outlying poor results influence the reported mean. These
occur as random initializations were used for both methods,
and poor starting points can lead to sub-optimal results. As the
Functional CP-TPA method solves a mathematical objective,
one can simply run this algorithm from different initializations
and take the solution yielding the best objective value.

Finally, we compare our proposed methods for Functional
HOPCA in terms of computational time. All methods were
programmed solely in Matlab and consistent criteria were
used to establish convergence. Table I reports the mean run
time in seconds over five trials for each of our methods in
the indicated simulation scenarios. Recall that the Functional
HOOI and CP-TPA methods perform best in terms of subspace
recovery; between these, Functional-CP-TPA offers substan-
tially reduced computational time, especially for the high-
dimensional scenario VII.

Overall, results demonstrate that our methods, especially
the Functional HOOI and Functional CP-TPA methods, are
better able to recover smooth underlying tensor factors than
competing tensor decomposition methods. We recommend,
however, the Functional CP-TPA method as it solves a coher-
ent mathematical objective and is computationally the most
efficient method.
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