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Abstract—We consider the problem of source number detection
based on uniform linear arrays (ULAs) and the recently proposed
nested arrays. A ULA with N sensors can detect at most N − 1
sources, whereas a nested array provides O(N2) degrees of
freedom with O(N) sensors, enabling us to detect K sources with
N<K sensors. In order to make full use of the available limited
valuable data, we propose a novel strategy, which is inspired
by the jackknifing resampling method. Exploiting numerous
iterations of subsets of the whole data set, this strategy helps
the existing detection methods achieve great improvements. Nu-
merical simulations demonstrate the advantage of our strategy,
both for ULAs and nested arrays.

Index Terms—Source number detection, nested array, jack-
knifing, uniform linear array

I. INTRODUCTION

Source number detection is a prerequisite for direction of

arrival (DOA) estimation. The use of a ULA for source number

detection has received a considerable amount of attention in

the last three decades [1]-[8]. Various methods have been

proposed according to different mathematical criteria. The

most commonly used techniques are based on information the-

oretic criteria, such as the Akaike information criterion (AIC)

[3], the Kullback-Leibler information criterion (KIC) [4], and

Rissanen’s minimum description length (MDL) [5] principle.

These methods conduct detection by combining eigenvalue

decomposition, the maximum likelihood function, and some

penalty functions. Another eigenvalue-based method, called

second order statistic of eigenvalues (SORTE) [6], is based

on a gap measure of the eigenvalues. A predicted eigen-

threshod (ET) approach was proposed by Chen [7], which

detects the number of sources by setting an upper bound on

the eigenvalues and then implementing a hypothesis testing

procedure. All the aforementioned methods are based on

eigenvalues of the sample covariance matrix. Eigenvectors can

also be used for the determination of sources. Jiang and Ingram

[8] proposed an eigenvector-based method by exploiting the

property of the variance of the rotational submatrix (VTRS).

All the existing detection methods exploit the available

data by calculating the whole sample covariance matrix.

This work was supported by the AFOSR Grant FA9550-11-1-0210 and
ONR Grant N000141310050.

However, this fails to make full use of the available limited

information. Jackknifing [9] is a resampling strategy used to

estimate sample statistics by using subsets of the available

data. Jackknifing [10] helps fully exploit the received data to

improve the detection performance.

A ULA with N sensors can detect at most N − 1 sources.

A systematic approach to achieve O(N2) degrees of freedom

using O(N) sensors based on a nested array was recently

proposed in [11], where DOA estimation and beamforming

were studied. This nested array can detect more sources than

the number of sensors [12].

In this paper, we propose a novel strategy, jackknifing, to

detect the number of sources. Both the ULA and the nested-

array are considered. Simulations are provided to demonstrate

the advantage of our strategy.

II. SIGNAL MODEL

We assume there is a nonuniform linear nested array with

N sensors, including two concatenated uniform linear arrays

(ULA). Suppose the inner ULA has N1 sensors with spac-

ing dI and the outer ULA has N2 sensors with spacing

dO = (N1 + 1)dI . We assume K narrowband sources are

in the surveillance region, impinging on this linear array from

directions {θk, k = 1, . . . ,K}. We can obtain the received

signal as

y(t) = Ax(t) + e(t), (1)

where y(t) = [y1(t), y2(t), . . . , yN (t)]T is the N received

signal at time t. Let a(θk) be the N × 1 steering vector

with the ith element ej(2π/λ)disinθk . di is the position of ith
sensor, which is an integer multiple of the basic spacing dI
or dO. λ denotes the carrier wavelength. Then the manifold

matrix can be expressed as A = [a(θ1),a(θ2), . . . ,a(θK)].
x(t) = [x1(t), x2(t), . . . , xK(t)]T is the source vector. We

suppose the source signals follow Gaussian distributions,

xk ∼ N (0, σ2
k), and they are all independent of each other.

The noise signal e(t) = [e1(t), e2(t), . . . , eN (t)]T is assumed

to be white Gaussian, and uncorrelated with the sources.

Suppose we have T measurements. Stacking all the mea-

surements together, we rewrite (1) as

Y = AX +E, (2)
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where

• Y = [y(1),y(2), . . . ,y(T )], an N × T matrix,

• X = [x(1),x(2), . . . ,x(T )], an K × T matrix,

• E = [e(1), e(t), . . . , e(T )], an N × T matrix.

Based on our assumption, the source autocorrelation ma-

trix Rx is diagonal: Rx = diag(σ2
1 , σ

2
2 , . . . , σ

2
K). Then the

autocorrelation matrix of the received signal is

Ry = ARxA
H + σ2

eI,

where σ2
e is the noise power, and I is the identity matrix.

Vectorizing Ry , we get:

v = (A∗ ⊗A)p+ σ2
e1e, (3)

where p = [σ2
1 , σ

2
2 , . . . , σ

2
K ]T , and 1e = [eT1 , e

T
2 , . . . , e

T
N ]T ,

with ei being a vector of all zeros except a 1 at the ith position.

We can view vector v in (3) as some new longer received

signals with the new manifold matrix A∗ ⊗ A, and the new

source signals p. ∗ denotes conjugation without transpose, and

⊗ denotes the Khatri-Rao product.

III. SOURCE DETECTION

We will use the nested array mentioned above to conduct

detection of more sources than the number of sensors. First,

we will briefly introduce spatial smoothing [11], which is

used to exploit the increased degrees of freedom. Then, we

will list four source detection methods, and propose a new

strategy, which applies jackknifing to improve the detection

performance.

A. Spatial Smoothing

In order to exploit the increased degrees of freedom pro-

vided by the co-array, we need to apply spatial smoothing.

We remove the repeated rows from A∗ ⊗ A and also sorte

them so that the ith row corresponds to the sensor location

(−N2/4 − N/2 + i)dI in the difference co-array of the 2-

level nested array, giving a new vector: v̄ = Āp+σ2
e ē, where

ē ∈ R((N2−2)/2+N)×1 is a vector of all zeros except a 1 at

the center position.

The difference co-array of this 2-level nested array has

sensors located at

(−N2/4−N/2+1)dI , . . . ,−dI , 0, dI , . . . , (N
2/4+N/2−1)dI .

We now divide these N2/2 + N − 1 sensors into

N2/4 +N/2 overlapping subarrays, each with N2/4 + N/2
elements, where the ith subarray has sensors located at

{(−i + 1 + n)dI , n = 0, 1, . . . , N2

4 + N
2 − 1}. The ith

subarray corresponds to the (N2/4 + N/2 − i + 1)th to

(N2 + N − i)th rows of v̄, denoted as v̄i = Āip + σ2
eei.

We can check that v̄i = Ā1Φ
i−1p + σ2

eei, where Φ =
diag(e−j(2π/λ)dsinθ1 , e−j(2π/λ)dsinθ2 , . . . , e−j(2π/λ)dsinθD ).
Viewing v̄i as a newly received vector, we can get the

equivalent covariance matrix Ri = v̄iv̄
H
i . Taking the average

of Ri, we get

Rave =
1

(N
2

4 + N
2 )

N2/4+N/2∑
i=1

Ri. (4)

The spatially smoothed matrix Rave enables us to perform

detection of O(N2) sources with N sensors.

B. Source Detection Using Jackknifing

As mentioned in the introduction, the sample covariance

matrix Ry is a key element for source detection. Con-

sidering a uniform linear array with N sensors, we do

eigenvalue decomposition: EVD(Ry) = UΛUT , where

Λ = diag(λ1, λ2, . . . , λN ) are the eigenvalues and U =
[u1,u2, . . . ,uN ] is the corresponding eigenvector matrix.

Suppose the eigenvalues are sorted decreasingly:

λ1 ≥ λ2 ≥ . . . ≥ λK > λK+1 = . . . = λN .

We now briefly introduce four detection methods.

• SORTE

A gap measure is defined:

SORTE(k) =

{
var({�λi}N−1

i=k+1)

var({�λi}N−1
i=k )

, var({�λi}N−1
i=k ) �= 0

+∞ var({�λi}N−1
i=k ) = 0

where k = 1, . . . , N − 2, �λi = λi − λi+1 and

var({�λi}N−1
i=k ) =

1

N − k

N−1∑
i=k

(�λi− 1

N − k

N−1∑
j=k

�λj)
2.

Then the source number is K = arg mink SORTE(k).
• VTRS

Suppose Es is the combined signal eigenvectors of Ry ,

and Ex and Ey are the first N − 1 rows and last N − 1
rows of Es respectively. Solving Ey = ExΦ based on

the least square criterion, we get matrix Φ. Define Δk =
{Φ(i, j)}(N−k−1)×k, i = k+1, . . . , N−1, j = 1, . . . , k.

Then the source number is

K = arg mink
‖Δk‖2

(N − k − 1)K
, k = 1, . . . , N − 2,

where ‖ · ‖ is the Frobenius norm.

• ET

Define the eigen-threshold

λ̄N−m = [(m+ 1)
1 + t(T (m+ 1))−1/2

1− t(Tm)−1/2
−m]lN−m+1,

(5)

where t is a pre-set parameter, and

li =
1

N − i+ 1

N∑
j=i

λj , i = k + 1, . . . , N.

Based on this, we keep testing the binary hypothesis: H0 :
K<N − m and H1 : K = N − m. Accept H1 or H0

according to λN−m �H1

H0
λ̄N−m. If H0 is accepted, then

we set m = m + 1, and continue. Otherwise, if H1 is

accepted, stop testing, and assign K = N −m.

• AIC

Define

L(k) =
T

2
log

(∏N
i=k+1 λ

1/(N−k)
i

1
N−k

∑N
i=K+1 λi

)N−k

,
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and P (k) = 1 + Nk − 1/2k(k − 1). Then the source

number is determined as

K = arg mink − 2L(k) + 2P (k).

All the existing methods are based on the eigenvalues or

eigenvectors of Ry . However, the received data can tell us

more.

Researchers have been using all the measurements as a

whole to get the sample covariance, then studying further

based on this covariance matrix. What we will try to do

here is make full use of the received data, achieving more

accurate detection. Jackknifing is an effective strategy used in

statistical area to estimate sample statistics. The idea is to use

subsets of available data to improve performance. We propose

a new detection strategy based on the idea of jackknifing. Our

basic belief is that a large proportion of the available data

approximately contains the same amount of information as

the whole available data set does.

Suppose we have T measurements in total:

Y = [y(1),y(2), . . . ,y(T )].

First, we take a subset YJ of size TJ from the T measurements

matrix Y :

YJ = [ŷ(1), ŷ(2), . . . , ŷ(TJ)],

where YJ ⊂ Y , ŷ(t) ∈ Y , and TJ = rT , with r expressed as

a percentage and satisfying 0.5 < r < 1. The constraints

for r help to guarantee our basic belief that the subsets

contain enough information. Specifically, we randomly pick

TJ elements from Y , without replacement, to form YJ . The

sample covariance based on YJ is

RYJ =
1

TJ
YJY

H
J

=
1

TJ

TJ∑
t=1

ŷ(t)ŷ(t)H .

Then we do eigenvalue decomposition for RYJ
:

EVD(RYJ
) = UJΛJU

T
J ,

where ΛJ = diag(λ̂1, . . . , λ̂TJ
). Using ΛJ and UJ , we

conduct source detection using the existing methods. Sup-

pose we obtain the source number K̂. We continue the

above two procedures for Z iterations, obtaining Z estimated

source numbers, K̂z, z = 1, . . . , Z. Before making the

decision of the final source number, we need one more step,

counting the occurrence of each estimated number, denoted

as Z1, Z2, . . . , ZN−1, with summation Z. The final source

number is chosen as the one that occurs most frequently:

K̂ = arg maxk Zk. (6)

The algorithm is shown in Table I.

Remarks:

• Theoretically, when the detection accuracy is higher than

50%, the detection performance with jackknifing will

TABLE I: Algorithm for Source Detection Using Jackknifing

begin
i = 0; % Iteration counter
Obtain r, TJ , Y
do

Randomly pick T i
J measurements from Y , get Y i

TJ
;

Obtain the covariance Ri
YJ

of Y i
TJ

;

Conduct source detection using Ri
YJ

;

Obtain the estimated number Ki;
i := i+ 1;

until i = Z % Z is a pre-set threshold;

Count the number of occurrence of each Ki: ZKi ;
Decide the source number according to (6).

end

definitely be improved. Please see the detailed proof in

our paper [10]. With over 50% accuracy, the correct

number detected should occur more frequently than other

numbers do. This assumption is based on the condition

that the jackknifing sample subset contains enough infor-

mation to guarantee over 50% accuracy. Otherwise, the

jackknifing will lose its power.

• For methods that are sensitive to sample number, we

need to increase the sample number to guarantee the

efficiency of jackknifing. For example, one method per-

forms well with the whole T samples. However, when

applying jackknifing, we just use rT samples, in which

case this method may achieve accuracy lower than 50%.

Consequently, jackknifing will fail. Alternatively, we can

adjust the value of r to guarantee the accuracy.

• When there is a low signal-to-noise ratio (SNR), namely a

high noise level, the detection methods may fail to detect

the source number correctly, with accuracy lower than

50%. This will cause jackknifing to perform badly, as

discussed in the first remark.

IV. NUMERICAL EXAMPLES

In this section, we use numerical examples to show the

superiority of our proposed strategy for source detection for

both a ULA and a nested array.

A. Uniform Linear Array

We consider a uniform linear array with N = 8 sensors

with equal spacing d = λ/2. Suppose we have K = 3 sources

in the scene, with the same powers σ2
1 = σ2

2 = σ2
3 = 9 and

impinging from directions θ = [−600, 00, 300]. We choose

a jackknifing iteration number Z = 20, the percentage of

r = 0.85, and the Monte Carlo simulation number T = 1500.

Fig. 1 shows the results of the aforementioned four different

methods: SORTE, VTRS, ET, and AIC, with and without

jackknifing. It describes the detection accuracy with respect to

the SNR. We take the SNR as 10log10
E[x2]
E[e2] , and the detection

accuracy as FK̂/F , where F is the trial number, and FK̂ is

the number of times that K̂ is detected. In this example, we

use F = 1000 trials.
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Fig. 1: Performance comparison of four methods with a ULA:

the blue-star line is the performance with jackknifing, and the

red-circle line without jackknifing. The vertical axis represents

the detection accuracy, while the horizontal axis represents

SNR.

We can see that all four methods achieve different levels of

improvement by applying jackknifing. SORTE improves the

most, and performs even better when the SNR is low. Note

that the detection accuracy is above 0.5 without jackknifing,

which guarantees the improvement of jackknifing. For ET,

the performance is highly related to the appropriate choice

of parameter t in (5). In our example, t = 1.2.

We also calculated the detection accuracy with respect to

various numbers of samples. The results are similar.

B. Nested Array

We consider a 2-level nested array with N = 6 sen-

sors, both inner and outer ULAs having 3 sensors, with

spacing dI = λ/2 and dO = 4dI . Suppose there are 8

sources, with equal power and impinging from directions

θ = [−600,−450,−150, 00, 150, 300, 450, 600]. It is impos-

sible for us to use a 6-ULAs to detect 8 sources. However

the spatial matrix Rave in (4) helps a nested array obtain this

goal. We choose jackknifing iteration number Z = 20, and

the percentage r = 0.85. We conduct T = 2000 Monte Carlo

simulations, and use F = 100 trials. From Fig. 1, we can see

SORTE and VTRS perform better, thus we consider only these

two methods for the nested array.

Fig. 2 shows the performance of SORTE and VTRS, with

and without jackknifing. We can see that at high SNR both

methods can detect the source number correctly with high

probability. Moreover, with jackknifing, both methods’ de-

tection accuracy increases at high SNRs, where the original

detection accuracy is higher than 0.5. On the other hand,

jackknifing’s performance degrades at low SNR, where the

accuracy is lower than half. This is in accordance with our

previous analysis. Additionally, SORTE slightly outperforms

VTRS.
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Fig. 2: Performance comparison of SORTE and VTRS with

nested arrays using 2000 samples.

V. CONCLUSION

In this paper, we proposed a novel strategy for source

detection by applying jackknifing. This strategy helps the

existing detection methods achieve great improvements by

making full use of the limited available data. Numerical

examples demonstrate the effectiveness of our strategy. For

future work, we will investigate the performance effect of the

percentage we choose when doing jackknifing. We will also

consider applying this strategy to a co-prime array.

REFERENCES

[1] A. Di and L. Tian, “Matrix decomposition and multiple source loca-
tion,” in Acoustics, Speech, and Signal Processing, IEEE International
Conference on ICASSP, Mar. 1984, pp. 722–725.

[2] A. P. Liavas and P. A. Regalia, “On the behavior of information theoretic
criteria for model order selection,” IEEE Trans. Signal Process., vol. 49,
pp. 1689–1695, Aug 2001.

[3] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Autom. Control, vol. 19, pp. 716–723, Dec. 1974.

[4] J. E. Cavanaugh, “A large-sample model selection criterion based on
Kullback’s symmetric divergence,” Stat. Probab. Lett., vol. 44, pp. 333–
344, 1999.

[5] M. Wax and I. Ziskind, “Detection of the number of coherent signals
by the MDL principle,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 37, pp. 1190–1196, Aug 1989.

[6] Z. He, A. Cichocke, S. Xie, and K. Choi, “Detecting the number of
clusters in n-way probabilistic clustering,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, pp. 2006–2021, Nov 2010.

[7] W. Chen, K. M. Wong, and J. P. Reilly, “Detection of the number
of signals: a predicted eigen-threshold approach,” IEEE Trans. Signal
Process., vol. 39, pp. 1088–1098, May 1991.

[8] J. S. Jiang and M. A. Ingram, “Robust detection of number of sources
using the transformed rotational matrix,” in Wireless Communications
and Networking Conference, Mar. 2004, pp. 501–506.

[9] J. Shao and D. S. Tu, The Jackknifing and Bootstrap. New York:
Springer, 1995.

[10] K. Han and A. Nehorai, “Improved source number detection and
direction estimation with nested arrays and ULAs using jackknifing,”
IEEE Trans. Signal Process., to be published.

[11] P. Pal and P. P. Vaidyanathan, “Nested array: A novel approach to
array processing with enhanced degrees of freedom,” IEEE Trans. Signal
Process., vol. 58, pp. 4167–4181, Aug. 2010.

[12] K. Han and A. Nehorai, “Wideband Gaussian source processing using
a linear nested array,” IEEE Signal Process. Lett., to be published.

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

60


