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Abstract—This work develops a new DOA tracking technique
by proposing a novel semi-parametric method of sequential
sparse recovery for a dynamic sparsity model. The proposed
method iteratively provides a sequence of spatial spectrum
estimates. The final process of estimating direction paths from
the spectrum sequence is not considered. However, the simulation
results show concentration of the spectrum around the true
directions, which simplifies DOA tracking, for example, using
a pattern recognition approach. We have also proved analytical
results indicating consistency in terms of spectral concentration,
which we omit in the interest of space and postpone to a more
extensive work. The semi-parametric nature of the proposed
method avoids highly complex data association and makes the
method robust against crossing. The computational complexity
per time sample is proportional to grid size , which can be
contrasted to a single-snapshot LASSO solution that has a
polynomial complexity order.

I. INTRODUCTION

The method of penalized least squares has offered new

possibilities to analyze of partially linear models. It provides a

robust implementation an has interesting theoretical properties

as a statistical shrinkage method. In particular, it can be

used to provide sparse solutions, which is suitable for the

problem of Direction Of Arrival (DOA) estimation. A very

well known example is the Least Absolute Shrinkage and

Selection Operator (LASSO) [1]. This work aims to generalize

penalized least squares for sequentially tracking a set of

temporally changing DOAs.

DOA estimation can be viewed as both a parametric esti-

mation and a non-parametric selection. While the parametric

methods provide more accurate and sophisticated machinery,

they suffer the intrinsic permutation ambiguity. On the other

hand, the penalized least squares are related to parameterizing

the essentially non-parametric model of DOA estimation by

a huge (possibly infinite), but sparse vector of parameters.

Presented in this semi-parametric framework, penalized least

squares enjoy the superior properties of a parametric design,

avoiding to associate parameters with corresponding DOA

values.

The permutation ambiguity is not restrictive in a static

estimation scenario. However, in the general dynamic case of

interest, it results in a data association problem, which needs

an extra process reducing the total performance, especially

when the individual tracks cross, appear or vanish. This so

called DOA tracking problem has been concerned by many

previous works, providing a rich literature referring to various

model-based tracking techniques. Among these attempts, one

may find sequential Bayesian ideas, e.g. [2], [3], as well as

subspace tracking techniques. The subspace methods, such

as [4] are low-computational with a guaranteed performance

for slow-varying models with an uncorrelated noise. However,

they are sensitive to the noise model mismatch. Furthermore,

it is not straightforward to adapt them for different time evolu-

tion models. Unlike subspace based techniques, the recursive

Bayesian filter may be simply designed for different evolution

models. Still, recovering a set of tracks with a dynamic order,

caused by crossover, creation or annihilation is considered as

a difficult problem for such approaches. In this context, the

semi-parametric method of penalized least square is appealing

as it does not concern permutation and can be easily designed

by different time models. Trained from the past observations,

a suitable semi-parametric tracking filter provides a spatio-

temporal spectrum which leads to precise track estimates by

methods such as [5] without considering data association.

The above idea is also addressed in sequential Compressed

Sensing (CS) and sparsity recovery literatures . Many of these

works such as [6] concern a static sparse vector measured

dynamically or like [7] assume a static support. However the

more general setup is addressed, e.g. in [8]. However, it may

not be relevant to the current application as first it assumes a

strong temporal relation in waveform and second it still need

a heavy computational process in each iteration. The work

in [9] is also conceptually similar to the current approach,

where only a small percentage of the support is assumed

to vary slowly at each time. Hence, it may still not meet

the current qualifications, where a very small support evolves

totally and rapidly. Finally, unlike [8], [9] and many other

CS-based attempts we do not directly impose sparsity at each

iteration, but promote a strongly concentrated spectrum, from

which estimation becomes simpler.

A. How to Track?

The tracking problem is connected with a functional esti-

mation, tractable only when performed sequentially. Such a

recursive design in various tracking methods share a common

recipe; Start from sequential estimation through a static model

instead. Then, add uncertainties at each iteration accounting

for the parameter dynamics. For example, the prediction step

in sequential Bayesian estimators (like Kalman filter) dissi-

pates the posterior probability density. This is clearer noting

that simplified by removing prediction step, the sequential

Bayesian filter boils down to dynamically implementing the
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Maximum Likelihood (ML) estimator of static parameters.

Similarly, the well know Projection Approximation Subspace

Tracking (PAST) [4] results by successively perturbing an in-

teresting optimization equivalent to signal and noise subspace

splitting.

The current study offers the same type of design by sequen-

tially converging to the solution of the sum-RMS penalized

least square (G-LASSO) in Section III, which is shown to be

consistent in many practical situations with a proper choice of

parameters [10]. This gives a non-parametric estimator of the

statiic sources similar to [11]. Later in Section IV we modify

each iteration to admit dynamic parameters.

II. MATHEMATICAL MODELING

Consider the following model:

x(t) =

n
∑

k=1

a(θk(t))sk(t) + n(t) (1)

where x(t) ∈ Cm is the known observed data vector at

discrete time t = 1, 2, . . . and a(θ) : [0 2π] → Cm is

the array manifold. Moreover, s(t) = [s1(t) s2(t) . . . sn(t)]T

and n(t) ∈ C
m are the unknown source (or waveform) and

measurement noise vectors, respectively. The measurement

noise is assumed to be centered, circularly symmetric, Gaus-

sian complex-valued vector process, while it is difficult to

assume a satisfactory statistical model for waveforms. Hence,

we treat them deterministically. The question is to find the

track vector θ(t) = [θ1(t) θ2(t) . . . θn(t)]T from the above

and some further assumptions on the nature of them. Although

ineffective in derivations, we have in mind the following

random walk DOA θk(t) evolution model:

θk+1(t) = θk(t) + ǫk(t) (2)

where ǫ(t) = [ǫ1(t) ǫ2(t) . . . ǫn(t)]T is a white uncorrelated

zero-mean Gaussian process. In this case, the Maximum A-

Posteriori (MAP) estimator for first T snapshots is given by

min
1

2

T
∑

t=1

‖x(t) − A(θ(t))s(t)‖2
2 + β

T
∑

t=2

‖θ(t) − θ(t − 1)‖2
2

(3)

where the minimum is taken over ({θk(t)}, {s(t)}), we define

A(θ) = [a(θ1) a(θ2) . . . a(θn)] and β is a positive fraction

of the noise and the process variances, controlling the relative

importance of the second term.

When DOAs are stationary, i.e. ǫ(t) = 0, the DOA track

vector expression reduces to θk(t) = θk where θk denotes

the kth stationary DOA. Then, β = 0 in (3). However, it is

still difficult to solve it directly. In this case it is proposed to

introduce a large set θG = [θg
1 , θg

2 , . . . , θg
N , ] of N candidate

DOAs and confine search over its elements, so that DOA

estimation becomes selecting a subset I ⊂ θG. It is also known

that the selection procedure can be accomplished by taking the

following so-called G-LASSO convex optimization [1]:

min
{sg(t)}

1

2

T
∑

t=1

‖x(t) − AGs
g(t)‖2

2 + λ

N
∑

k=1

√

√

√

√

T
∑

t=1

|sk(t)|2 (4)

The matrix AG is equal to A(θG) = [a(θg
1) a(θg

2) . . . a(θg
N )]

and the design parameter λ controls the number of nonzero

elements in the optimal solution of G-LASSO. To emphasize

on its dependence on the window size T , we may index λ as

λT . The vector s
g also denotes the generalized source vector

corresponding to the elements of θG. The DOA estimates

then correspond to the nonzero entries of the optimal point.

It is possible to show that under some mild conditions [10],

the support of G-LASSO solution well-approximate the true

directions when λT /
√

T tends to a proper finite value. Hence,

for simplicity and without loss of generality we assume that

λT = λ
√

T where λ is a proper design value. Moreover,

despite the unbounded growth of the G-LASSO dimension,

it can be performed by a bounded complexity as its solution

only depends on the covariance R = E(x(t)xT (t)).

III. STOCHASTIC G-LASSO PROGRAM

In this part, we propose a stochastic recursion, whose output

converges to the solution of G-LASSO (4) when T → ∞.

We later generalize this idea to include parameter dynamics.

We simply write the optimality condition of G-LASSO and

suitably alter it to obtain a recursion. We may then prove its

desired convergence. As shown in [12], the optimal solution

of (4) satisfies

A
H
z(t) = λTP

−1
T s(t) (5a)

∀θ

√

√

√

√

T
∑

t=1

|aH(θ)z(t)|2 ≤ λT (5b)

where A = A(I) denotes the collection matrix of the steering

vectors corresponding to the support of the optimal solution

and s(t) indicate the the values of its corresponding nonzero

elements. In other words, assuming I = {θg
i1

θg
i2

. . . θg
in
}, we

have that s(t) = [sg
i1

(t) sg
i2

(t) . . . sg
in

(t)] where sg
k(t) denotes

the kth element of the optimal point. Naturally, sg
k(t) = 0

if θg
k /∈ I . Moreover, the vector z(t) = x(t) − As(t) is the

residual vector and P denotes a diagonal matrix whose kth

element equals to the RMS value pik
where

pk(T ) =

√

√

√

√

T
∑

t=1

|sg
k(t)|2. (6)

From (5a) and after straightforward manipulations we con-

clude that

s(t) = PT A
H(APT A

H + λT I)−1
x(t). (7)

Let us introduce σk(T ) = pk(T )/
√

T and ΣT as the N × N
diagonal matrix, whose kth element equals σk(T ). Then (7)

equivalently leads to

s
g(t) = ΣT A

H
G (AGΣTA

H
G + λI)−1

x(t). (8)

Note that (8) does not solve for s(t) as the term ΣT depends

on s(t). Moreover, unlike (7) the expression in (8) includes all

entries of s
g although it leads to a trivial equality for elements

outside I .
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The relation in (8), where the value of σk(T ) depends on

future values of sk(t) cannot be directly used in a sequen-

tial procedure. Hence, we propose substituting σk(T ) by an

approximation σ̂k(t) from the previous estimates s
g(t′) for

t′ < t. Then,

s
g(t) = Σ̂tA

H
G (AGΣ̂tA

H
G + λI)−1

x(t) (9)

where Σ̂t denotes a diagonal matrix with σ̂g
k(t) as its kth

element. This may indeed include different types of dynamical

models as well. We discuss the dynamical case in more details

in the next section. Let us take a simple example in the static

case, where σ̂k(t) = pk(t−1)/
√

t − 1. This can be recursively

implemented by

σ̂2
k(t + 1) =

tσ̂2
k(t) + |sg

k(t)|2
t + 1

. (10)

Neglecting the technical details, it can be seen that the iter-

ations in (10) and (9) may not provide satisfactory properties.

It only converges for high enough values of λ which leads

to under estimated order. This is mainly because the updating

step in (10) shrinks faster than the uncertainty at each iteration

so that the vector σk(t) diverges with O(log t). This may be

fixed by considering the following more general form of (10),

σ̂2
k(t + 1) = (1 − α(t))σ̂2

k(t) + α(t)|sg
k(t)|2 (11)

with a proper choice of α(t). However, as our main goal is to

design a dynamical filter, we postpone the current discussion

on a consistent choice of α(t) to a future work.

IV. A SPECTRUM TRACKING METHOD

To design a tracker recursion, we exploit the framework

obtained in the previous section; Fixing a sequence of step

lengths α(t) and iterating by (11) and (9). Obviously, the

value of α(t) defines how much the current value of σ̂k(t)
depends on the previous observations. Hence, a lower value

of α(t) corresponds to a more dynamical model. Incidentally,

a static model may be obtained by letting α(t) → 1 with a

proper convergence speed. In contrast, when α(t) is fixed to

some value α, the iterative approach continuously forgets the

effect of relatively old samples, which best suits a stationary

dynamical model. In this case, it is not difficult to see that

σ̂2
k(t) = α

∑

t′<t

(1 − α)t−t′ |ŝk(t′)|2 (12)

and that this is equivalent to the more familiar recursion of

σ̂2
k(t + 1) = (1 − α)σ̂2

k(t) + |sg
k(t)|2, (13)

without any multiplier in the second summand, together with

(9) when λ is replaced by λ/
√

α. As both λ and α are

parameters of design, we may use (13) and (9) to obtain

another valid recursive estimator.

Although the preceding approach recovers some aspects of

a dynamic setup, it surprisingly rules out the uncertainty at

each iteration in favor of a static model, leading to undesired

discontinuous estimates. This is better presented in the
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Fig. 1. The exact trajectory of two DOAs in terms of electrical angle.

following unproven statement:

For a stationary process x(t) , the estimated support

through iterative application of (13) and (9) converges in the

sense that the values of σ̂k tend to zero for corresponding

inactive indexes. In other words, the spectrum σ̂k arbitrarily

concentrates around a fixed support after a sufficient number

of iterations.

Unfortunately, as the simulations in the next section suggest,

the above result also applies to many non-stationary cases

of interest. To cope with this, we propose to widen the σ̂k

spectrum in each iteration by smoothing the result of (13)

before applying it to the next one. Due to our selected model

in (2), we heuristically propose to update σ̂k to a spatial

neighborhood average which retains the linear complexity with

N . Finally, a single iteration of the proposed method is given

by

s
g(t) = Σ̂t|t−1A

H
G (AGΣ̂t|t−1A

H
G + λI)−1

x(t) (14a)

σ̂2
k(t|t) = (1 − α)σ̂2

k(t|t − 1) + |sg
k(t)|2 (14b)

σ̂2
k(t + 1|t) =

1

2K + 1

k+K
∑

k′=k−K

σ̂2
k′ (t|t) (14c)

where K is the spatial averaging radius and Σ̂t|t−1 is a

diagonal matrix with σ̂k(t|t − 1) as the diagonal element.

V. NUMERICAL RESULTS

In this part, we demonstrate the result of recursively apply-

ing the steps in (14) in the following relatively difficult sce-

nario of two DOA tracks. The signals are measured by a half

wavelength Uniform Linear Array (ULA) of m = 4 sensors.

The first DOA, θ1(t) uniformly orbits the sensor array such

that φ1(t) = 4πt−π for t ∈ [0 1), where φi(t) = π cos(θi(t))
is the corresponding electrical angle. Note that φ is modular,

i.e. the values φ and φ ± 2π are interchangeable. The second

one θ2(t) oscillates with φ2(t) = π/2 sin(2πt). Figure (1)

depicts them over time. There is no discontinuity in the second

path as the points φ = π and φ = −π correspond to the

same DOA. The signal waveform and noise sequences were
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Fig. 2. The result of applying the recursion with forgeting factor and no
spatial smoothing.
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Fig. 3. The result of applying the recursive method by spatial smoothing.
K=2

simulated by zero-mean, white, Gaussian, uncorrelated vectors

with variances 1 and 0.1 respectively, which correspond to

SNR=10 dB. We took a uniform grid of N = 600 DOA points

and constructed AG by the following array manifold:

a(θ) = [1 ejφ ej2φ . . . ej(m−1)φ]T (15)

All plots depict 1000 samples in a unit time interval. We

first considered the recursive method including (13) and (9).

Figure 2 shows the contour plot of the scaled spectrum at

different times. The white region corresponds to zero value

of σ(t). As seen, the spectrum σk(t) first concentrates around

the desired path. However, it eventually converges to some

stationary points as predicted by the statement in Section

IV. We then considered the steps in (14), where smoothing

is included. Figure 3 correspond to K = 2 in (14). The

values of λ and α were fixed to 0.5 and 0.2 respectively.

Obviously, a larger value of K leads to smoother, but wider

(less informative) spectrum estimates. This is comparable to

the role of the process noise level in classical Kalman filters.

Finally, Figure 4 compares the track estimates of the current

method and the PAST algorithm (with MUSIC spectrum) by

taking the spectrum peak points. As seen, the proposed method

recovers cross points remarkably easier than PAST.

VI. CONCLUSION

In this work, we proposed a new low-complex method of

DOA tracking, summarized in (14). We show its superior
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Fig. 4. The DOA estimates for the current method compared to that of the
PAST algorithm.

properties by simulation in a difficult scenario. More elaborate

results and comparisons as well as analytical discussions are

postponed to future work due to lack of space. However, our

preliminary results show that the proposed method resolve the

problem of association and is robust against crossing.

To maintain low complexity, we made a very simple use of

the evolution model by considering spatial smoothing. A more

sophisticated way of connecting neighboring samples in space

and time might lead to a similar reduced noise sensitivity with

less resolution loss. But this might lead to more computational

complexity, thus loosing the original goal of this work.
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