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Abstract—Recently it has been proposed that two-dimensional
(2D) oversampled received arrays could be used to provide
signal-to-external noise ratio (SENR) gains for over-the-horizon
radar applications which are strongly externally noise limited.
These array configurations can be used to exploit superdirective
adaptive beamforming techniques. A key element of the superdi-
rective adaptive beamforming process is the estimation of the
array spatial noise covariance matrix. In this paper we propose
a parametric covariance modeling technique called aperture
varying autoregressive (AVAR) covariance modeling that captures
the 2D spatial correlation structure of high-frequency (HF)
background noise sampled by an oversampled 2D receive array.
The use of this covariance modeling technique can significantly
reduce the computational requirements for the inversion of large
spatial covariance matrices. Additional gains are achieved via
reduced sample support requirements for an N -element 2D
receive array.

In this paper we introduce 2D aperture varying autoregressive
models AVAR(m,l) that are spatially non-stationary generaliza-
tions of traditional autoregressive AR(m) or AR (m,l) techniques.
While traditional AR techniques model covariance structure
as toeplitz or toeplitz-block-toeplitz, these new AVAR models
enforce a banded or doubly banded inverse covariance structure
which is more general. The introduced AVAR methods are
closely coupled to the oversampled array architecture which
in the presence of nearly homogeneous external noise exhibits
spatial correlation most strongly amongst closely spaced elements.
Therefore the use of these AVAR methods effectively restricts the
adaptive beamforming to gains achievable through superdirective
beamforming.

Index Terms—Over–the–horizon radar, autoregressive model-
ing, 2D phased array, superdirectivity, oversampled array, HF.

I. INTRODUCTION

The problem of efficient covariance matrix estimation for
adaptive beamforming problems is an ever present issue in
adaptive beamforming methods. The continual advancement of
sensor system architectures combined with a steady decrease
in component costs allow for the possibility of receiver-per-
element array designs to be utilized on the scale of 1000+
elements in a single array. Recently a 2D spatially oversampled
receive array architecture [5] was proposed for a problem re-
lated to over-the-horizon radar (OTHR) detection in externally
noise limited scenarios. Given the large number (300-500) of
receive array elements utilized by current generation OTHR
systems [6], 1000+ element systems are certainly within the
realm of possibility for 2D OTHR receive arrays. In this
paper we propose a parametric modeling technique for the

estimation of the receive array spatial covariance matrix when
the external noise covariance is derived from a nearly homo-
geneous background noise field as described in [5]. The use
of the proposed modeling technique method allows for both
reduced inverse covariance matrix computation requirements
and reduced training sample support requirements.

Superdirective beamforming [7] is not a new concept. A new
understanding of high frequency (HF) nighttime (3-10MHz)
background noise characteristics however has resulted in a pro-
posed 2D spatially oversampled receive array architecture that
yields the potential for increased signal-to-external noise ratio
(SENR) gains without the need to construct extremely large
(>3km) 1D uniform linear array apertures. The signal pro-
cessing requirement to achieve this gain is the use of adaptive
beamforming. Analysis has shown that the optimal adaptive
beamforming solutions are superdirective; beamforming gain
is achieved by closely spacing array elements and forming
beams that are more narrow in physical beam space than
traditional beams. In practice the actual noise environment
is both temporally non-stationary and non-homogeneous, thus
the use of adaptive beamforming is critical to achieving the
maximum attainable SENR gain.

In [5] several HF background noise distributions are pro-
posed that allow one to model the potential performance of
arrays with different geometries. One can show by inspection
that in the case of a uniformly oversampled 2D array both the
array noise covariance matrix and its inverse exhibit a banded
structure, assuming the enumeration of the array elements is
performed in an orderly column-wise or row-wise format. This
covariance structure suggests that parametric modeling tech-
niques may be applicable for the task of covariance matrix esti-
mation. In this paper we explore the potential of autoregressive
methods to improve the covariance matrix estimation process.
In section II we introduce the autoregressive covariance model.
In section III we quantify the SENR modeling loss incurred
under specific array geometries and a prior noise models.

II. AVAR MODELING OF 2D OVERSAMPLED HF
BACKGROUND NOISE

The aperture varying autoregressive (AVAR) modeling
methodology for covariance modeling of HF background noise
sampled by an oversampled 2D receive array is based on
the recently introduced 2D space-time TVAR(p,q) [1], [2]
methods. These prior methods rely upon the fundamental
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band-matrix extension results of H. Dym and I. Gohberg [3].
In this paper we translate the fundamental methodology of
these prior parametric modeling techniques to a 2D space-
space aperture varying scenario that is relevant to recently
proposed 2D oversampled receive arrays for HF OTHR [5].

Suppose a N element 2D planar receive array consists of
M rows and L columns such that N = M × L. The ML ×
ML variate covariance matrix may be presented as a block-
Hermitian matrix

R ≡ {rpqjk}
p,q=1,...,M
j,k=1,...,L ≡ {Rjk}j,k=1,...,L ∈ HMLxML(1)

Rjk ≡ {rpqjk}
p,q=1,...,M ∈ CMxM , Rjk = RH

kj (2)

where C and H are the classes of complex and complex
Hermitian matrices. The indices p and q refer to the array
element column numbers while indices j and k refer to
the array element row numbers. For a given ML-variate
positive definite Hermitian-block covariance matrix R, the
2D AVAR covariance matrix approximation of order m and
l, AVAR(m,l), is the positive definite matrix R(m,l)

R(m,l) ≡ {(r(m,l))pqjk}
p,q=1,...,M
j,k=1,...,L (3)[

R(m,l)
]−1

≡ {(f (m,l))pqjk}
p,q=1,...,M
j,k=1,...,L (4)

that satisfies

(r(m,l))pqjk = rpqjk for |j − k| ≤ l
⋂
|p− q| ≤ m ≡ BB

(f (m,l))pqjk = 0 for |j − k| > l
⋃
|p− q| > m ≡ B̃B.(5)

This construction means that the approximation matrix R(m,l)

consists of a block band region BB whose element are the same
as those in the specified matrix R, while outside this region the
elements are completed in a manner that ensures the inverse
approximation matrix

[
R(m,l)

]−1
is strictly block banded with

zeros in the region B̃B. In the limiting case that m=M-1,
this 2D approximation reduces to a 1D AVAR approximation
AVARM (l).

In the 1D case it can be shown that this matrix model has
a unique analytic solution given by the Dym and Gohberg
(DG) factorization [3], denoted by DG(l) [R] [1]. In the 2D
case, existence of a unique solution can be proven, however
no analytic solution exists [2]. Two methods for solving the
2D problem are introduced in [2]; in this paper we use the
Alternating Dym-Gohberg algorithm, ADG. The ADG algo-
rithm solves for the maximum entropy (ME) 2D completion
through a series of alternating 1D DG factorizations.

The ML variate array covariance matrix R has been intro-
duced as a Hermitian-block matrix, an L×L block matrix with
M ×M blocks. It is equally valid to re-order the elements so
that the matrix is a M ×M block matrix with L×L blocks.
With the original enumeration denoted as R ≡ RML, these
two specific enumerations are related as

RLM = JRMLJ
T (6)

where J is the ML ×ML unitary permutation matrix with
appropriate ordering of the rows of the identity matrix IML.

ADG Algorithm [2]: Given R > 0, compute

A
(1)
(m,l) = DG(l) [R] . (7)

Then iterate over k as

A
(k+1)
(m,l) = DG(l)

[
JT
{
DG(m)

[
JA

(k)
(m,l)J

T
]}

J
]
. (8)

Two characteristics of the 2D AVAR technique are worth em-
phasizing. First, significantly fewer computations are required
to produce the array spatial covariance. This occurs as a result
of the DG factorization which operates on small size principle
minor matrices of the much larger N × N covariance R.
Secondly, also as a result of the DG factorization reduced
sample support is required for covariance matrix estimation.
Similar to that which is demonstrated in [2], for an ML×ML
variate covariance matrix, the AVAR(m, l) minimum sample
support requirement is reduced to

τ
AV AR(m,l)
min = (m+ 1)(l + 1) (9)

in comparison to the τSMI
min = ML samples required for the

generic sample covariance matrix estimate.

III. AVAR SUPERDIRECTIVE SENR MODELING LOSS

In this section we explore the parametric modeling loss due
to the use of the non-optimal adaptive beamforming solution.
For reference we repeat the form of the spatial noise model
introduced in [5] as well as some of the important assumed
array properties. In this paper we consider uniform rectangular
arrays (URA’s) composed of short non-resonant monopoles
over a perfect earth. This results in an element pattern defined
as

bH(θ, φ) = 1/4(2πh/λ)4 sin2(θ). (10)

We also consider a family of external noise distributions,
homogeneous in azimuth and tapered in elevation:

f2n(θ, φ) = ((1 + 2n)/π) cos2n(θ), n = 0, 1, 2, . . . (11)

The external noise array spatial covariance matrix can then be
specified as

Rext =

∫ π

0

∫ 2π

0

s(θ, φ)sH(θ, φ)·

bH(θ, φ)f2n(θ, φ) sin(θ)dθdφ, (12)

where s(θ, φ) are the array steering vectors. An accurate
analytic expression for (12) can be found in [5]. The complete
array spatial covariance R is defined as

R = Rext + σ2
intI. (13)

This model formulation approximates the array internal noise
covariance as white noise with power σ2

int. The per element
external-to-internal noise ratio (EINR) is thus defined as
R11/σ

2
int.

Given a true array covariance R and steering vector s ≡
s(θ0, φ0) the clairvoyant optimal beamforming is given as the
well known solution

wopt = R−1s. (14)
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The optimum array gain qopt with respect to the conventional
white noise processing is

qopt =
sHR−1ssHRs

|sHs|2
. (15)

Let the AVAR(m,l) adaptive filter be defined as

w(m,l) = [R(m,l)]−1s (16)

where R(m,l) is the AVAR(m,l) covariance model derived from
the covariance matrix R. The SENR AVAR(m,l) model gain
loss factor relative to wopt can thus be expressed as

η =
sHR−1swH

(m,l)Rw(m,l)

|wH
(m,l)s|2

. (17)

We will now explore the model mismatch loss encountered
for a specific array and noise scenario. Consider a scenario
with an an N =270-element rectangular array consisting of
M = 30 columns and L = 9 rows. The array elements are
positioned on a rectangular grid with spacing of 12.5m. The
array is operated at 6MHz and thus twice oversampled. The
external noise is modeled according to (11) with parameter
n =1 and EINR=30dB. Figures 1 and 2 illustrate the structure
of the inverse covariance for both the true covariance and
an AVAR(5,5) approximation. The AVAR model does not
completely capture the inverse covariance matrix structure
at the large lag values, however the low lag values are
qualitatively well approximated. In terms of the covariance
matrix eigenspectra, figure 3 demonstrates that the AVAR
approximation is quite close to the true behavior. Finally we
can compare the actual performance through the realized array
beampatterns, SENR gain, and the SENR loss factor. Figure 4
shows the conventional white noise beamformer beampattern.
The SENR for this beamformer is 19.931dB, or 7.322dB
of loss relative to the optimal solution shown in figure 5
which has an SENR of 27.253dB. The AVAR(5,5) beampattern
is shown in figure 6 which has a SENR of 26.7552dB, or
0.4978dB of loss relative to the optimal solution. It is clear
that the AVAR technique can efficiently model the true array
covariance matrix and produce beamformer outputs with low
loss.

The AVAR model mismatch loss has been demonstrated for
a single choice of model parameters. It is instructive to explore
how the mismatch loss behaves as the model order is varied
for a fixed look direction, array configuration, and noise field.
Figures 7 and 8 show the variation in the model mismatch
for the same scenario described previously for two specified
beam directions, (270o,900) and (180o,900) respectively. An
important characteristic to note is the relative invariance of
the mismatch loss to the model order parameter describing the
band-limited approximation in the dimension orthogonal to the
specified look direction. This behavior is consistent with the
properties of superdirective beamforming which are sensitive
to array depth for endfire geometries. In a broader context,
the demonstrated mismatch loss behavior indicates that for
wide azimuthal sectors of regard, the selection of nearly equal

Fig. 1. Structure of true noise inverse covariance matrix for URA(9,30) and
noise model n =1.

Fig. 2. Structure of AVAR(5,5) noise inverse covariance matrix for
URA(9,30) and noise model n =1.

AVAR model order parameters will yield the lowest mismatch
on average.

In practical applications of the AVAR(m, l) model, its pa-
rameters should be selected based on operational requirements,
admissible total SENR losses, that apart from mismatch losses
analyzed above, include stochastic losses associated with a
limited training support, antenna calibration losses, etc. With
regard to stochastic losses, in the related space-time 2D TVAR
study [2], it was shown that incorrect model order selection can
be compensated by lower stochastic losses in some scenarios.
With regards to this study, we showed that 1) it is possible
to utilize low-order models and realize low model mismatch
loss and 2) joint parameter selection (m, l) should be guided
by the azimuthal surveillance area of regard.

IV. CONCLUSION

In this paper, we conducted a theoretical analysis of a
parametric covariance modeling technique called 2D AVAR in
planar uniform rectangular antenna arrays (URAs), considered
for receive antenna applications in OTH sky-wave radars.
This study was motivated by the demonstrated theoretical
SENR gain potential of such arrays, but with the recognition
that efficient adaptive beamforming methods are required to
realize such gains in practice due to computational and training
sample support limitations. The current study has been limited
to exploring the covariance model mismatch loss, however

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

402



Fig. 3. Eigenspectra for true and AVAR(5,5) noise inverse covariance matrix
of URA(9,30) and noise model n =1.

Fig. 4. Conventional white noise 2D beampattern of URA(9,30)

Fig. 5. Optimal 2D beampattern of URA(9,30) and noise model n =1.

Fig. 6. AVAR(5,5) 2D beampattern of URA(9,30) and noise model n =1.

Fig. 7. AVAR Mismatch of URA(9,30) and noise model n =1 for beam
steered to (270o,900)

Fig. 8. AVAR Mismatch of URA(9,30) and noise model n =1 for beam
steered to (180o,900)

future efforts will demonstrate the stochastic loss aspect of
the problem.
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