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Abstract—We propose two statistical probability approaches
to extract personal feature from the user’s grip force data.
One approach is based on grip force changes predicted by the
Kalman filter, the other is based on distributions of grip force
changes by Jensen-Shannon(JS) divergence. Personal feature is
the customary behavior that repeatedly appears without the user
being aware of it. The personal feature is used for not only
user-authentication, but also user-special commands. We mount
pressure array sensors on a mobile phone and show that our
proposals can extract personal feature from the user’s grip force
data with 10[%)] error in FAR-FRR by the Kalman filter approach
and the accuracy of 100[%] by the JS divergence approach.

I. INTRODUCTION

As mobile phones are always interacting with their users,
they know a lot about the user’s customs. Owing to the
emergence of smart phones, mobile phones are becoming more
sophisticated with a variety of sensors that can easily capture
information specific to not only the immediate environment
but also the user. In order to realize more sophisticated mobile
services, we have already researched the Personal Context
Extractor (PerContEx)” which extracts personal feature in the
form of personal habits” from a variety of data such as
sensor data logs. (We have shown “gait analyzer with a mobile
phone”[1] as an application based on PerContEx.) In this paper,
we target the extraction of personal feature created while the
user holds and uses his/her mobile phone. This makes user-
authentication as well as indirect command input possible. Of
particular importance, this concept can prevent illegal use and
increases the range of commands available to the user without
demanding that the user learns more complicated operations
or key-chords.[2] The user’s grip force consists of time-series
data that exhibits, in regular use, a repeatable pattern. If a
sufficiently unique personal feature can be detected while key-
operations are in progress, we can realize “’soft authentication”.
Soft authentication is different from hard authentication in
terms of the use case requirements. Hard authentication re-
quires that the user does some special action for authentication
such as putting his/her finger on a sensor or directly facing
a camera. In contrast, soft authentication does not need any
special action because user authentication is performed in the
background. Moreover, the personal feature can be also applied
to implement user-specific command actions if the temporal-
spatial patterns in the user’s key-operations can be recognized
as “his/her habits”. Most conventional methods[3], [4], [5]
create a command interface from the two-dimensional static
grip patterns identified from changes in grip positions and
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finger-touches. Since the variation in grip positions and finger-
touches is quite limited, the resulting command interface is
not so useful and the mobile phone is insecure since it can
be operated by a person other than the owner. If user-specific
commands based on his/her habits can be defined, it is possible
to reduce the risk of the device being operated by a person
other than the owner. Some user-authentication schemes utilize
the temporal-spatial patterns in the user’s actions such as key-
typing for computers[6] and gait[7] for mobile phones. The
former cannot be applied to smart phones because they do not
have keyboards. The latter can be used when the device is
carried, but it is difficult to apply when the user is accessing a
mobile service. In order to realize soft authentication without
requiring specific actions, we must identify which actions of
the user are natural when using a mobile phone. Therefore, we
extract personal feature from grip patterns. Examples of mobile
services based on personal feature use the user’s log data
such as service-recommend and auto-complete of character
input, and user’s bodily characteristics and behavior data such
as biometrics. In the case of service-recommend and auto-
completion, personal feature is extracted from symbolic data
not signal data, so statistical approaches such as Bayesian are
used most often. To achieve high accuracy, however, a lot of
data is required. In the case of biometrics, signal processing
approaches are used, but the user must perform unnatural
actions. This paper targets the extraction of personal feature
during natural interactions between the user and the phone
because doing so can realize not only user-authentication but
also user-special commands.

II. PREPARATION FOR EXPERIMENTS
A. Experimental Conditions

1) Pressure sensors: We assume four pressure sensor (PPS,
Inc.) arrays are mounted on the mobile phone, each with 226
cells (see Fig. 1). The pressure sensors are capacitance sensors.
Their sensibilities have a sensible range from 0 to 100[kPal)
and are linear to grip forces with less than 2[%)] hysteresis
error. As they are less than 1[mm)] thick, they can be mounted
within the body of conventional mobile phones. The pressure
data are saved in the phone’s memory. When the user holds
the phone with pressure sensors, we can extract pressure data
{fi;(t)} where (i, j) represents a position of the array sensor.
We denote all pressure data £, = (f11(t), -, faun, (8)T
extracted by IV, and IV, which represent pressure sensor cell
number along x and y-axis, respectively. In the evaluation
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Two array pressure sensors
on left and right edge sides of a mobile phone

Fig. 1: A Mobile Phone with Pressure Sensors

experiments, all processing is done on a personal computer.

2) Our subjects: Our subjects were eight men and two
women with ages ranging from 20 to 40; all had better than
average skill in mobile phone operation. The assumption is that
subjects who are well experienced in mobile phone operation
would exhibit quite clear personal habits as user behaviors
that repeatedly appear without the user being aware of them.
To emphasize their habitual actions, we set them the task of
“random browsing mails received on the mobile phone” by
using key-strokes for 60[sec]. We obtained their data for the
same task for about one month.

3) Sensory data: Pressure data was captured every
100[msec] when the subject was browsing the mail on the
mobile phone. Each set of pressure data has 600[frames].
Only the 500[frames] yielded by cutting the head and tail
frames were analyzed (this yields more stable data). The
10 subjects generated from 3 to 11 sets of pressure data
each. (Three sets are used for user discrimination and the 11
sets used for repeatable and minimal data volume to realize
identification.)

B. Preprocessing sensory data

In the experiments, the sensors mounted on the phone con-
sist of arrays of small tile sensors. They offer high resolution
in terms of spatial pressure distribution. Since the sensor arrays
are very flexible, the alignment of the sensor arrays can become
deformed if the user holds the mobile phone strongly. This
is characteristic of the hysteresis effect and the raw sensor
data is not always accurate. Indeed, we recognized this in
our preliminary experiments. Therefore, we performed some
preprocessing operations such as noise reduction by wavelet
transform and removal of DC component.

III. OUR PROPOSED ALGORITHM

In our experiments, as subjects browsed their mails freely
as normal, the sensor data captured could contain some kinds
of fluctuations. Generally, it is difficult to extract features
reliably from this type of sensor data by using conventional sig-
nal processing techniques such as FFT and High-order Local
Auto Correlation(HLAC). Indeed, in our preliminary experi-
ments, we already confirmed that FFT and HLAC approaches
could not reliably extract personal feature. Therefore, we
adopted two statistical probability approaches: the Kalman Fil-
ter method and the Jensen-Shannon(JS) divergence[8] method.
The former is used in the estimation of flexible objects such as
object tracking[9]. The latter is used to handle the dissimilarity
between probability distributions such as topic models. In
order to evaluate these methods, we set the following criteria
for personal feature extraction as follows; 1) Feature offers
user discrimination. 2) They are repeatable. 3) Minimal
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data volume to realize identification. Under these criteria, we
evaluate our two methods for personal feature extraction.

A. Probability Statistics approach 1: Kalman filter

1) Feature Extraction by Kalman filter: The approach tries
to model grip force changes mathematically. We deal with
similarities of personal features by comparing the grip force
changes observed and those estimated by this method. Because
state estimation by a Kalman filter offers robustness with
respect to data fluctuations by use of a time-series filter,
it can estimate temporal-spatial data from the last set of
sequential data. The sensory data noise is similar to a Gaussian
distribution and grip force changes can be assumed to be
a central force like spring motion. Therefore, this means
that the Kalman filter assumptions are satisfied. We use a
Kalman filter to predict changes in pressure data. It has a
two step learning process: prediction step and update step.
In the prediction step, based on the state at the last time,
the state at the present time is predicted. In the update step,
based on the error between the state predicted at the former
step and the state observed, the predicted state is updated.
In the experiments, we denote the observation state y; as

changes {yi(?w)(t)} of user usp’s grip force {fi(fm)(t)}. At
time ¢, system state (change in grip force) is represented by
x;. Assuming that state transition matrix F; and observation
matrix H; are linear models and system noise and observation
noise have Gaussian distributions, we obtain the following
formulas. In this approach, we try to model grip force changes
mathematically.
Y xt41 = Fixi + Gywy (1)

yi = Hyx¢ + vy (2)

where w; ~ N(0,R;) and v; ~ N(0,Q:), N(0,R;) and
N(0,Q;) represent a normal distribution with mean of 0,
covariance R; and Qq, respectively. Then, G; represents the
state noise matrix. In the prediction stage, system & state is
calculated as follows;

)A(t = )’\(t/tfl + Kt(yt - Htit/tfl) (3)

where X;/,_ represents the system state & predicted at time
t by using & at time ¢ — 1. Then, we can obtain the prediction
of observed system y;. K; is called "Kalman gain”, and is
adjusted based on the errors of observations and predictions
identified in the learning stage.

K; = Pt/tlezﬂ(HtPt/tle? +Ry)! 4)

where f’t /¢—1 represents the covariance of errors in updated
system status. Based on the above equations, we can obtain the
likelihood distribution LH ;) as the reliability of grip force
changes in y(“2). Then, we define the likelihood distribution
as feature vector as follows;

V@) = LH 5)

2) Validation of personal feature: In order to verify that
the above feature vector is valid for personal feature, we
calculate the probabilities LH o) (¥ 12)) of verification

data y(“/”’) with the likelihood distribution LH ;). Indeed,
we count the number of grip force changes whose prediction
reliability values are larger than threshold value Thp,. We de-
fine criteria Cri p(urp,u'p) to evaluate similarity between
learning data and verification data as follows;
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Fig. 2: Accuracy of user-authentication by FAR-FRR curve

g (LHy(uID> (y<u ID))a Thper)

(6)
U (LH oy (Y 1P)) > Thp,)

0 otherwise

Crir(urp,u’'1p)= Z

observation time

5 (LHy(u1D> (y(u ID))vThPT): {
(7

If CTKF(UIDa ’u/[D) > Thene 1s satisfied, we judge that uw'rp
is similar to urp. (T'hone is a threshold of ratio of satisfied
data points in verification data.)

To evaluate stability when learning for generalization, we
use the Jack-knife method; one set of pressure data is used
as verification data and the remaining sets of pressure data
are used as learning data. We calculate the average accuracy
in user-authentication for all combinations of learning and
verification data sets obtained according to the Jack-knife
method. Then, we calculate the averages of the errors yielded
by the recognition of the different data sets as criteria.

Moreover, for the repeatability of personal feature extrac-
tion, we evaluate what amount of data would be needed to
ensure the repeatability of personal feature extraction; we com-
pare the distributions based on all data and different amounts of
data. In order to evaluate the degree of stable convergence, we
use the square Euclidean distance between JS divergence[10]
vectors among one subject u;p and the other subjects u';p as
the criterion. JS divergence JSD(p || ¢) basically represents
the dissimilarity of probabilistic distributions p(x) and ¢(z)

where r(z) = (p ( ) +a(x))/2.
qlx .T
JSD(p | q) = (Z (x log7+z @) ) (®)
3) Results:  We evaluated the accuracy of user-

authentication by FAR-FRR curves. Fig. 2 plots FAR-FRR
curves for each sensory data format for user-authentication
based on grip force. We found that this method could hold
the FAR-FRR error rate to 10[%]. The results show that
dealing with the sensor cells as patterns allows the realization
of user-authentication. We also evaluated what amount of
data would be needed to ensure the repeatability of personal
feature extraction; Fig. 3 shows the amount of verification
data needed for stable convergence. Fig. 3 (a) shows the
ratio of the data that are assured of exceeding the probability
threshold. Fig. 3 (b) shows the differences in Euclidean
distance between JS divergence distribution at the verification
time and that at the time of convergence. We have two findings
as follows; First, the differences in Euclidean distance for one
person and between people lie in the range of 0.1 to 1.3 and
about 0.1 at convergence, respectively. In other words, 0.1 can
be taken as the threshold for distinguishing between people.
Second, the corresponding amount of verification data needed

131

The differences for one person and between other persons (ID02)

[Red Line: distance in one person
Blue line: distances between one person
‘and other persons

n__o

Threshold for distingushing
between self and other persons

Y

\

Distortion

-

50 100 150 200 250 300 350 400 450 500
Obsevation time [frame]

(a)

<

The differences from probabilistic distribution in all data (ID02)

1
[Threshold line = 0.1 or -0.1
(the differences in Euclidean distance

beiween Ji> divergences)

Rate of data points satisfied

300[frame]|=30[sec]

0 50 100 150 200 250 <3000 350 400 450 500
Observation time [frame]

(b)

Fig. 3: Amount of Verification Data Necessary for the
Kalman filter approach

would take about 30[sec| to acquire since the method needs
to confirm the ratio of data that can be assured of exceeding
the threshold.

B. Probability Statistics approach 2: JS divergence

1) Feature Extraction by JS divergence: While the above
approach used the reliability of predicted grip force changes
in an observation period, the next approach uses distributions
of grip force changes in an observation period. Our pressure
sensors are so sensitive that it is difficult to remove some noise
components such as hysteresis and fluctuation. To suppress the
effects of these noises, we calculate the differences between
the distributions of grip force changes in an observation period
and a static condition by using JS divergence. Because the dis-
tributions express the likelihood of the appearance of grip force
changes in an observation period, JS divergence can also repre-
sent the difference between two probabilistic distributions. As
the user’s grip positions are not always same, the user’s holding
patterns contain some untouched areas in pressure sensor array.
In these conditions, Kullback-Leibler(KL) divergence can not
always be applied since some signal components are missing.
Accordingly, we use JS divergence, which is defined as the
mean of KL divergence. We set the histogram of grip force
changes in static situation as a standard distribution. Then, we
use differences in the histograms of grip force changes in key-
operation as the personal feature. We generate histograms of
the temporal differences of grip forces as follows;

hist{*1™) (k) Zayf;”” (1), r(k)) ©)

where (k) represents the kth bin in the histogram.

JS divergence D( urp) jg represented as follows;(see eq.(8))

DUP) = JSD(hist! ™) (k) || histS ™" (k) (10)
We define feature vector V( 10) a5 follows;
viur) = (plur)y (1 <i<N,1<j<N;) (1)
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2) Validation for personal feature: Using the Jack-knife
method, we verify that the above feature distances between
each user’s feature vectors. In order to evaluate the degree of
stable convergence, we use the square Euclidean distance be-
tween Jensen-Shannon divergence vectors among one subject
usp and the other subjects u';p as the criterion.

CT‘JS(UID,UIID) = ||VS}%ID) _ V((;;LSID)HQ

(12)

If Crjs(urp,uw'rp) > Thygs is satisfied, we judge that u';p
is similar to uyp. (T'hyg is a threshold of JS divergence.)

Moreover, to evaluate the repeatability of personal feature
extraction, under the assumption that the changes in grip force
present in all data sets of a user contain personal features
such as “user’s habits”, that is to say, the distribution based on
all data is assumed to be the target distribution that contains
personal features, we evaluate what amount of data would
be needed to ensure the repeatability of personal feature
extraction. We compare the distributions based on all data and
different amounts of data. The amount of data represents the
minimum time needed to accumulate verification data. In order
to evaluate the amount of verification data needed for stable
convergence, we calculate the ratio of data that exceeded the
discrimination threshold.

3) Results: The 3D bar graph in Fig. 4 shows the differ-
ences between individuals in terms of JS divergence in case
of using all datasets. JS divergences were calculated from the
difference distributions of grip force changes in user’s key-
operations from distribution based on fluctuations of sensor
data in static situation. x-axis, y-axis and z-axis represent user
ID in learning data, user ID in verification data and differences
in Euclidean distance, respectively. The figure indicates that the
differences of Euclidean distance in individuals had values of
around 0.2, whereas differences of Euclidean distance between
individuals had values of more than 0.5. This means that the
JS divergences approach can yield the accuracy of 100[%)] if
the threshold of the Euclidean distances is set to the value
which is between 0.2 and 0.5. Therefore, this approach has
the potential to yield effective personal features.

We also evaluated what amount of data would be needed
to ensure the repeatability of personal feature extraction; we
compared the distributions based on all data and different
amounts of data. The amount of data represents the minimum
time needed to accumulate verification data. (one data set
is equal to 60 seconds.) In order to evaluate the amount of
verification data needed for stable convergence, we calculated
the ratio of data that exceeded the discrimination threshold.
Also, in order to evaluate the degree of stable convergence,
we used the square Euclidean distance between JS divergence
vectors among one subject and the other subjects as the
criterion. Fig. 5 plots the sum of deviation in JS divergence
versus the number of datasets. We can see that at least two
data sets(120 seconds) are needed to extract personal feature
because the differences of Euclidean distance in individuals
had values of around 0.2.

IV. CONCLUSION

We evaluated the extraction of personal features from user’
s grip force in key-operation of a mobile phone; we exam-
ined two probability-based approaches for data processing.
Only these probability approaches could adequately extract
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the personal habits containing personal feature so as to allow
people to discriminated. The Kalman filter approach yielded
the accuracy of 10[%] error in FAR-FRR according to the
Jack-knife method; 30[sec] of verification data is needed. The
JS divergence approach was shown to need at least 120[sec]
of learning data in order to extract personal feature with
the accuracy of 100{%]. To create a more useful interface
for mobile phones, we will try to evaluate personal feature
discriminators based on machine learning such as Bayesian
and kernel methods.

REFERENCES

[1] T. Iso and K. Yamazaki, “Gait analyzer based on a cell phone with a
single three-axis,” ACM MobileHCI ° 06, pp. 141 — 144, 2006.

[2] N. D. Lane, E. Miluzzo, H. Lu et al., “A survey of mobile phone
sensing,” [EEE Communications Magazine, pp. 140 — 150, 2010.

[3] T. Feng, K. Kwon, W. Shi ef al., “Continuous mobile authentication
using touchscreen gestures,” 7o appear in IEEE HST, 2012.

[4] C. Stewart et al., “Characteristics of pressure-based input for mobile
devices,” CHI 10, pp. 801 — 810, 2010.

[5] K.Kim et al., “Hand grip pattern recognition for mobile user interfaces,”
IAAL'06, pp. 1789 —1794, 2006.

[6] W. E. Eltahir, W. K. Lai, A. F. Ismail et al., “Hardware design,
development and evaluation of a pressure-based typing biometrics
authentication system,” DICTA 2003, pp. 49 — 54, 2003.

[77 M. O. Derawi, C. Nickely, P. Bours et al, “Unobtrusive user-
authentication on mobile phones using biometric gait recognition,” //H-
MSP 2010, pp. 306 — 311, 2010.

[8] I Oliveira, O. Grigore, N. Guimaraes et al., “Relevance of eeg input
signals in the augmented human reader,” Proceedings of the st Aug-
mented Human International Conference, pp. 1 — 9, 2010.

[91 Y. Boykov and D. P. Huttenlocher, “Adaptive bayesian recognition in
tracking rigid objects,” Computer Vision and Pattern Recognition, 2000.
Proceedings. IEEE Conference on, pp. 2697— 2697, 2697-2697.

[10] D. M. Endres and J. E. Schindelin, “A new metric for probability
distributions,” Information Theory, IEEE Transactions on, pp. 1858 —
1860, 2003.



