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Abstract—The multi-Bernoulli filter is a promising method
for computationally efficient and accurate multi-target tracking.
Computationally tractable approximations of the multi-Bernoulli
filter equations for superpositional sensors were recently derived.
In this paper we present a particle filter implementation of
these approximate update filter equations. We describe how
the filter could be employed to address the radio-frequency
tomographic tracking task and conduct a simulation study to
compare performance with the probability hypothesis density
(PHD) and cardinalized probability hypothesis density (CPHD)
filters.

I. INTRODUCTION

In multi-target tracking, we strive to detect and track a
possibly time-varying number of targets. The changing number
of targets makes tracking the full posterior challenging and
computationally expensive. The random finite set (RFS) for-
mulation, introduced by Mahler in [1], [2], provides an elegant
framework for computationally efficent multi-target tracking.
The probability hypothesis density (PHD) filter [1] and car-
dinalized probability hypothesis density (CPHD) filter [2] are
popular first-moment based filters developed using the random
finite set framework.

The PHD and CPHD filters track only the first moment
of the posterior. In most cases this leads to a need for post-
processing procedures such as clustering to identify which
part of the probability hypothesis density corresponds to each
target. The multi-Bernoulli filter, proposed by Mahler in [3]
and modified by Vo et al. in [4], is an alternative random finite
set filter that approximately propagates the full multi-target
distribution. This allows us to eliminate much of the post-
processing overhead, leading to a cleaner and more efficient
filter implementation.

In this paper, we address the task of multi-target track-
ing when superpositional sensors [5] are used to make ob-
servations. Superpositional sensors make observations that
are functions of (potentially) all the targets present. The
“superpositional” property requires that targets contribute to
sensor measurements in an additive fashion (see Section II
for clarification). Examples of superpositional sensors include
direction-of-arrival sensors for linear antenna arrays [6], an-
tenna arrays in multi-user detection for wireless communi-
cation networks [7], and radio frequency (RF) tomographic
tracking systems [8].

Recently, we derived an approximation of the multi-
Bernoulli filter for superpositional sensors [5]. Although the
filter update equations were identified in [5], no method of
implementing the filter was specified. The main contribution
of this paper is to describe a particle filter implementation
of the approximate multi-Bernoulli filter for superpositional
sensors.

Related work: Auxiliary particle filter implementations of
computationally tractable approximations of the PHD and
CPHD filters for superpositional sensors were presented in [9].
Particle implementations of the multi-Bernoulli filter for stan-
dard sensors (each sensor makes an independent observation
that is related to at most one target) have been discussed
in [10]–[13].

II. PROBLEM FORMULATION

Our multi-target tracking task is to the estimate the number
of targets present at each time step and their corresponding
states. The system state (target positions, velocities, etc.)
at time k is captured by the random finite set Xk =
{xk,1, . . .xk,nk

} where nk ≥ 0 is number of targets present
at time k. We assume that the individual target dynamics
are specified by a Markovian model of the form xk+1,i =
fk+1|k(xk,i,uk) where uk is a noise term. The single target
state dimension is nx, so xk,i ∈ Rnx ∀i.

The superpositional sensors provide measurements zk =
[z1k . . . z

nz

k ] at time k. Denote the collection of measurements
up to time k as Z [k] = {z1, . . . , zk}. The superpositional
sensor model dictates that the likelihood function relating the
observation zk and true state Xk is of the form

hzk
(Xk) = hzk

(r(Xk))

= hzk

(∑
x∈Xk

g(x)

)
(1)

where hzk
is a real-valued function and g and r are (potentially

non-linear) functions mapping to vectors of reals. When the
sensor observation noise is additive Gaussian with zero mean
and covariance matrix Σr, the likelihood takes the form

hzk
(Xk) = NΣr (zk − r(Xk)). (2)

In this paper, we will focus on the Gaussian observation noise
case.
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III. MULTI-BERNOULLI FILTER FOR SUPERPOSITIONAL
SENSORS

In this section we summarize the prediction and approxi-
mate update filter equations for the multi-Bernoulli filter, as
derived in [5]. The multi-Bernoulli filter is based on a multi-
Bernoulli modelling of the underlying random finite set (RFS).
A multi-Bernoulli RFS is a union of finitely many Bernoulli
random finite sets, each of which models the probability of
existence and state distribution of a single target.

A Bernoulli random finite set is an empty set with prob-
ability 1 − r or is a singleton set with probability r with
its element x distributed according to the probability density
p(x). It is completely described by specifying the parameter
set {r, p(x)}. A multi-Bernoulli RFS χ with M components
is a union of M Bernoulli random finite sets, χ = χ1 ∪
χ2 ∪ · · · ∪ χM , where each of the χi is a Bernoulli RFS.
Let the parameters of the ith Bernoulli random finite set be
given by {ri, pi(x)}. The parameter set of the corresponding
multi-Bernoulli RFS is denoted by {ri, pi(x)}Mi=1. The multi-
Bernoulli filter strives to track these parameters.

A. Multi-Bernoulli filter prediction

The superpositional observation model does not change
the multi-Bernoulli prediction equations [3], [10]. Let
{rk,i, pk,i(x)}Mk

i=1 be the parameter set of the posterior multi-
Bernoulli density at time k. Let the predicted multi-Bernoulli
set have Mk+1|k elements. For brevity we use the fol-
lowing abbreviated notation for the predicted parameters:
ri = rk+1|k,i and pi(x) = pk+1|k,i(x). The predicted multi-
Bernoulli RFS parameters are

{ri, pi(x)}
Mk+1|k
i=1 = {rPi , pPi (x)}

Mk
i=1 ∪ {rBi , pBi (x)}

Mk+1|k
i=Mk+1

where {rPi , pPi (x)}
Mk
i=1 are the parameters of targets propa-

gated from the previous time step and {rBi , pBi (x)}
Mk+1|k
i=Mk+1

are the parameters of newly born targets. The predicted target
parameters at time k+1 are related to the posterior parameters
at time k as

rPi = rk,i × ⟨pk,i, ps⟩, pPi (x) =
⟨fk+1|k(x|·), pk,ips⟩

⟨pk,i, ps⟩

where the scalar product is defined as ⟨a, b⟩ =
∫
a(x)b(x)dx

and ps(x) is the survival probability.

B. Approximate multi-Bernoulli filter update

Using the following abbreviated notation for the updated
parameters, r′i = rk+1|k+1,i and p′i(x) = p′k+1|k+1,i(x), the
following approximate filter update equation was derived in [5]
for the case of Gaussian observation noise:

r′i · p′i(x) ≈ ri · pi(x) ·
NΣr+C ī

k+1
(zk+1 − g(x)− µī

k+1)

NΣr+Ck+1
(zk+1 − µk+1)

(3)

This expression involves the following statistics:

µk+1 =

Mk+1|k∑
i=1

ri · si (4)

Ck+1 =

Mk+1|k∑
i=1

(ri · vi − r2i · sisTi ) (5)

where si = ⟨pi, g⟩, vi = ⟨pi, ggT ⟩ and

µī
k+1 = µk+1 − ri · si (6)

C ī
k+1 = Ck+1 − (ri · vi − r2i · sisTi ). (7)

Please refer to [5] for the derivations and more detail.

C. Multi-Bernoulli filter cardinality update

Approximate update equations for the cardinality distribu-
tion πk(n) were also provided in [5]:

πk+1(n) ≈ πk+1|k(n) ·
NΣr+Cn

k+1
(zk+1 − µn

k+1)

NΣr+Ck+1
(zk+1 − µk+1)

(8)

This expression involves the following statistics:

µn
k+1 =

1

πk+1|k(n)

Mk+1|k∑
i=1

ri · πī
k+1|k(n− 1) · si

Cn
k+1 =

1

πk+1|k(n)

(Mk+1|k∑
i=1

ri · πī
k+1|k(n− 1) · vi

+
∑
i̸=j

ri · rj · πī,j̄
k+1|k(n− 2) · sisTj

)
− µn

k+1(µ
n
k+1)

T

where πī
k+1|k(·) is the cardinality distribution excluding the ith

component of the multi-Bernoulli RFS and πī,j̄
k+1|k(·) excludes

both the ith and jth components.

IV. PARTICLE IMPLEMENTATION OF MULTI-BERNOULLI
FILTER

Pseudocode for a particle filter based implementation of the
multi-Bernoulli filter is given in Algorithm 1. For clarity, we
have presented a version where only one new target can appear
at each time step, but the generalization is straightforward.
The posterior multi-Bernoulli RFS at time step k has Mk

components with parameters given by {rk,i, pk,i(x)}Mk
i=1. The

distribution pk,i(x) for each component is approximated using
a weighted set of Np particles

pk,i(x) ≈
Np∑
j=1

w
(j)
k,iδx(j)

k,i

(x) (9)

The multi-Bernoulli prediction equations are used in the
prediction step of the algorithm to update the parameters.
The target survival probability is assumed to be a constant
ps and birth probability for a new target is pb (lines 4-14).
One new target is added per iteration step to account for new
born targets. In the absence of a specified prior for the birth
distribution, the particles for a new target are chosen uniformly
within the observation region.
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The required statistics of the mean and covariance matrix are
estimated using the particles (lines 15-21). The approximate
update equation (3) is used to update the particle weights. The
sum of the updated particle weights provides an estimate of
the existence probability. Resampling is performed after the
weight update. Multiple methods can be employed to estimate
the cardinality. Here we employ a simple thresholding of the
existence probability rk,i with threshold parameter r0. Only
the targets above this threshold are carried forward to the
next time step. Location estimates are obtained by a simple
averaging of all the particles for each component.

A. Computational complexity

In this section we examine the computational complexity of
the algorithm outlined in the previous section. The prediction
step has complexity of the order O(MNp). Let the observation
dimension be Nz . Estimating the statistics of µ and C is order
O(MNpNz + MNpN

2
z ). The update step requires inverting

matrices for each component, each of which takes O(N3
z ).

Thus the update step requires computations of the order
O(MNp + MN3

z ). The resampling step is O(MNp). Thus
the overall computational complexity is of the order

O(MNp +MNpNz +MNpN
2
z +MNp +MN3

z +MNp)

≈ O(MNpN
2
z +MN3

z ) (10)

V. NUMERICAL SIMULATIONS

In this section we evaluate the multi-Bernoulli (MBR) filter
in multi-target tracking application using the radio-frequency
(RF) tomography setup [14]. We compare the MBR filter with
the auxiliary particle filter implementations of the PHD and
CPHD filters [9] for superpositional sensors.

The true target trajectories are shown in Figure 2. A single
target state consists of its location in the x − y plane and its
velocity. The trajectories are generated using linear Gaussian
dynamics (see [9] for more detail) with a sampling period of
T = 0.25s and noise variance of 0.35m2.

A. Radio-frequency tomography

A detailed description of the Radio-frequency tomography
setup and the RF tomography multi-target measurement model
can be found in [9], [14]. A network of N sensors forming
Nz = N(N−1)/2 unique bidirectional links is used to survey
a region, generating Nz measurements each time step. The jth

link measurement zjk at time step k is:

zjk = rj(Xk) + vj
k =

∑
x∈Xk

gj(x) + vj
k (11)

where, gj(x) = ϕ exp

(
−λj(x)

σλ

)
.

Here λj(x) is an elliptical distance measure between a target
located at x and link j (see [9] for more details); ϕ and
σλ are fixed parameters based on physical properties of the
sensors; vj

k is the zero-mean Gaussian sensor noise. The RF
tomography measurement equation has a superpositional form
as can be seen by comparing equations (11) and (1). In our

1: Initialize M0 existence probabilities {r0,i}M0
i=1

2: Initialize M0 particle filters {w(j)
0,i ,x

(j)
0,i}

Np

j=1

3: for k = 1 to T do
4: Prediction
5: for i = 1 to Mk−1 do
6: rk|k−1,i = rk−1,i × ps
7: for j = 1 to Np do
8: x

(j)
k,i ∼ fk|k−1(xk,i|x(j)

k−1,i)

9: w
(j)
k|k−1,i = w

(j)
k−1,i × ps

10: end for
11: end for
12: add new target: Mk|k−1 = Mk−1 + 1
13: rk|k−1,Mk|k−1

= pb

14: initialize {w(j)
k|k−1,Mk|k−1

,x
(j)
k,Mk|k−1

}Np

j=1

15: Estimate statistics
16: for i = 1 to Mk|k−1 do
17: ŝk,i =

∑
j w

(j)
k|k−1,i g(x

(j)
k,i)

18: v̂k,i =
∑

j w
(j)
k|k−1,i g(x

(j)
k,i) g

T (x
(j)
k,i)

19: end for
20: µ̂k =

∑
i rk|k−1,i · ŝk,i

21: Ĉk =
∑

i(rk|k−1,i · v̂k,i − r2k|k−1,i · ŝk,iŝ
T
k,i)

22: Update weights
23: for i = 1 to Mk|k−1 do
24: µ̂ī

k = µ̂k − rk|k−1,i · ŝk,i
25: Ĉī

k = Ĉk− (rk|k−1,i · v̂k,i− r2k|k−1,i · ŝk,iŝ
T
k,i)

26: for j = 1 to Np do
27: w

(j)
k,i = rk|k−1,i × w

(j)
k|k−1,i

28: ×
N

Σr+Ĉī
k
(zk−g(x

(j)
k,i)−µ̂ī

k)

NΣr+Ĉk
(zk−µ̂k)

29: end for
30: rk,i = min(

∑
j w

(j)
k,i , 1)

31: resample: {w(j)
k,i ,x

(j)
k,i}

Np

j=1 → { 1
Np

,x
(j)
k,i}

Np

j=1

32: end for
33: Update cardinality
34: for n = 0 to Mk|k−1 do
35: estimate µn

k and Cn
k

36: πk(n) = πk|k−1(n) ·
NΣr+Cn

k
(zk−µn

k )

NΣr+Ĉk
(zk−µ̂k)

37: end for
38: State estimation
39: Mk = 0
40: for i = 1 to Mk|k−1 do
41: if rk,i > r0 then
42: cardinality: Mk = Mk + 1

43: location: x̂k,Mk
= 1

Np

∑
j x

(j)
k,i

44: end if
45: end for
46: end for

Figure 1. Multi-Bernoulli filter particle implementation.
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Figure 2. Estimated target location using the multi-Bernoulli filter. Dotted
lines show true target trajectories and the circles indicate estimated locations.
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Figure 3. Box-and-whisker plot of OSPA error over time. Boxes indicate 25-
75 interquartile range; whiskers extend 1.5 times the range and ‘+’ symbols
indicate outliers lying beyond the whiskers.

simulations we use N = 20 sensors placed on the periphery of
20m× 20m square region. The RF tomography measurement
model parameters are ϕ = 5 and σλ = 0.4. The measurement
noise variance is σ2

r = 0.25.

B. Simulations and results

We execute multiple (100) Monte Carlo simulations with
different random initializations to compare performance. The
same target trajectories (as shown in Figure 2) are used in all
the simulations. The number of targets present varies from 1
to 4 over the course of the simulation. Table I summarizes
the average optimal subpattern assignment (OSPA) error [15]
for different algorithms. The error is calculated using three
different vales of the cardinality penalty factor c = 1, 2.5
and 5. Cardinality is estimated by thresholding the existence
probability (ri) using the threshold r0 = 0.2.

OSPA error
Algorithm c = 1 c = 2.5 c = 5

PHD 0.49 1.03 1.95
CPHD 0.12 0.15 0.16
MBR 0.11 0.18 0.30

Table I
RADIO-FREQUENCY TOMOGRAPHY MULTI-TARGET TRACKING: AVERAGE

OSPA ERROR FOR PHD, CPHD AND MBR FILTERS.

The MBR filter has a slightly smaller error than the CPHD
filter when the cardinality error penalty is small (c = 1) but a

larger error as the value of c is increased. This indicates that
MBR makes more cardinality errors compared to the CPHD
but is slightly more accurate in estimating the target locations.
Figure 2 shows example estimated target trajectories.

Figure 3 plots the box-and-whisker plot of the average
OSPA error over time combining data over 100 Monte Carlo
simulations with cardinality penalty factor c = 1. The MBR
filter has more outliers than CPHD filter due to cardinality
errors, but the median error is smaller.

VI. CONCLUSIONS

We have presented a particle filter implementation of the
multi-Bernoulli filter equations for superpositional sensors. We
examined the performance of the proposed filter using nu-
merical simulations of radio-frequency tomographic tracking.
The multi-Bernoulli filter has more cardinality errors than the
CPHD filter but its median location error is otherwise smaller.
The filter poses a reduced computational overhead because it
avoids the costly clustering step.

REFERENCES

[1] R. Mahler, “Multitarget Bayes filtering via first-order multitarget mo-
ments,” IEEE Trans. Aerospace and Electronic Systems, vol. 39, no. 4,
pp. 1152–1178, Oct. 2003.

[2] ——, “PHD filters of higher order in target number,” IEEE Trans.
Aerospace and Electronic Systems, vol. 43, pp. 1523–1543, Oct. 2007.

[3] ——, Statistical multisource-multitarget information fusion. Artech
House, Boston, 2007.

[4] B. Vo, B. Vo, and A. Cantoni, “The cardinality balanced multi-target
multi-Bernoulli filter and its implementations,” IEEE Trans. Signal
Proc., vol. 57, no. 2, pp. 409–423, 2009.

[5] S. Nannuru and M. Coates, “Multi-Bernoulli filter for superpositional
sensors,” in Proc. Int. Conf. Inf. Fusion, Istanbul, Turkey, Jul. 2013.

[6] B. Balakumar, A. Sinha, T. Kirubarajan, and J. Reilly, “PHD filtering
for tracking an unknown number of sources using an array of sensors,”
in Proc. Workshop Stat. Sig. Proc., Bordeaux, France, Jul. 2005.

[7] D. Angelosante, E. Biglieri, and M. Lops, “Multiuser detection in a dy-
namic environment: Joint user identification and parameter estimation,”
in Proc. IEEE Int. Symp. Inf. Theory, Nice, France, Jun. 2007.

[8] X. Chen, A. Edelstein, Y. Li, M. Coates, M. Rabbat, and A. Men,
“Sequential Monte Carlo for simultaneous passive device-free tracking
and sensor localization using received signal strength measurements,” in
Proc. Int. Conf. Inf. Proc. Sens. Networks, Chicago, IL, U.S.A., April
2011.

[9] S. Nannuru, M. Coates, and R. Mahler, “Computationally-tractable
approximate PHD and CPHD filters for superpositional sensors,” IEEE
J. Sel. Topics in Sig. Proc., vol. 7, no. 3, pp. 410–420, 2013.

[10] B. Vo, B. Vo, N. Pham, and D. Suter, “Joint detection and estimation of
multiple objects from image observations,” IEEE Trans. Signal Proc.,
vol. 58, no. 10, pp. 5129–5141, 2010.

[11] R. Hoseinnezhad, B. Vo, and B. Vo, “Visual tracking in background
subtracted image sequences via multi-Bernoulli filtering,” IEEE Trans.
Signal Proc., vol. 61, no. 2, pp. 392–397, 2013.

[12] J. Williams, “Hybrid Poisson and multi-Bernoulli filters,” in Proc. Int.
Conf. Information Fusion, Singapore, Jul. 2012.

[13] F. Lian, C. Li, C. Han, and H. Chen, “Convergence analysis for the
SMC-MeMBer and SMC-CBMeMBer filters,” J. of App. Mathematics,
vol. 2012, 2012.

[14] F. Thouin, S. Nannuru, and M. Coates, “Multi-target tracking for
measurement models with additive contributions,” in Proc. Int. Conf.
Information Fusion, Chicago, IL, U.S.A., Jul. 2011.

[15] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Trans. Signal
Proc., vol. 56, no. 8, pp. 3447–3457, Aug. 2008.

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

371


