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Abstract—A new algorithm, the progressive proposal particle
filter, is introduced. The performance of a standard particle
filter is highly dependent on the choice of importance density
used to propagate the particles through time. The conditional
posterior state density is the optimal choice, but this can rarely be
calculated analytically or sampled from exactly. Practical particle
filters rely on forming approximations to the optimal importance
density, frequently using Gaussian distributions, but these are not
always effective in highly nonlinear models. The progressive pro-
posal method introduces the effect of each observation gradually
and incrementally modifies the particle states so as to achieve an
improved approximation to the optimal importance distribution.

I. INTRODUCTION

Particle filters are an established class of algorithms for
approximating the Bayesian filtering distribution of a latent
state in a sequential model (See [1], [2].) Their mechanism is
to propagate a set of weighted samples, or “particles”, through
time, distributed approximately according to the desired filter-
ing distribution. The particles are typically propagated by im-
portance sampling; a new state is sampled from an importance
density and assigned a weight proportional to the ratio of the
filtering and importance densities.

The efficacy of a particle filter depends substantially on
the choice of importance density. If it is well matched to
the filtering density then the resulting particles will have even
weights, and the filter works well. On the other hand, if there
is a mismatch between the densities, the population is likely
to be dominated by a small proportion of particles with high
weights, and the filter works poorly.

The optimal choice for the importance density — in the
sense of minimising the weight variance — is the conditional
posterior density of the state [3]. However, this can rarely be
sampled from or evaluated exactly. Instead, it is common to use
approximations, for example by choosing some appropriately
adapted Gaussian density [3], [4]. For many mildly nonlinear
models such an approximation has proven effective, but as the
nonlinearity and dimensionality increase, and the modes of the
optimal importance density become less and less Gaussian,
performance becomes worse.

In this paper, we introduce a new mechanism for carrying
out the importance sampling steps in a particle filter. The effect
of each new observation is introduced gradually, and a new
state is set for each incremental step using a local Gaussian
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approximation. Since each final particle state is reached via
a series of intermediate steps, we name this algorithm the
progressive proposal particle filter (PPPF). By using small
steps and adapting the approximations to the current state, a
more accurate approximation to the optimal importance density
is achieved, and the resulting filter proves more effective than
competitors using a single Gaussian as the importance density.

The concept of introducing the likelihood progressively
has been used before, for assumed density filtering [5], [6],
annealed and progressively corrected particle filters [7]-[10],
and for particle flow filters [11]. The new algorithm, whilst
sharing this idea, is distinct from all of these.

II. PARTICLE FILTERING

We consider a standard discrete-time HMM in which the
transition, observation and prior models have closed-form
densities,

wy ~ f(@e]we—1)
Yi ~ g(yelt)
1 NP($1)7

where the random variable x; is the hidden state of a sys-
tem at time ¢, and y; is a partial, noisy observation. We
assume here that the transition, observation and prior densities
may be evaluated and that the prior and transition densi-
ties may be sampled. A particle filter is used to estimate
recursively distributions over the path of the state variables,
214 = {21,...,x}. Densities are approximated by a sum of
weighted probability masses located at a discrete set of states,

_ () s
p(T1elyre) = Zwt 0, (Z1:4),

where 57«(12 (z1.¢) denotes a unit probability mass at the point
xﬁ, and the weights sum to 1. The particle filter recursion
may be separated into two stages — prediction and update
— which produce approximations to the predictive density,
p(z1:t|y1.4-1), and the filtering density, p(x1.¢|y1.t), respec-
tively.

For brevity here, we consider only the simplest algorithm,
in which particle selection is not optional and “auxiliary”
methods [12] are not used. At time ¢, the prediction stage
begins with selection (resampling) of a parent from amongst
the ¢t — 1 particles; an index, a;, is chosen with probability
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w,”;. Next, a new state xu )i

is sampled from an importance

(:L't\:ct 71,yt) and concatenated to the parent path

to form the new particle, ngz — {;L(lat’) 1> xEJ )}. Finally, an

importance weight is assigned to the particle to account for
the discrepancy between importance and target distributions,

density,
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In the update stage, the same set of particles is used to
approximate the filtering distribution. Since these are currently
distributed according to,

77($1:t) = p(xlzt—l|y1:t—1)Q(It|It—1a yt)»

a new importance weight is required to account for the
discrepancy,
©)
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Finally, the weights are normalised, w; = wﬁj ) / > wii).

If the transition density is used as the importance density

then the resulting algorithm is the “bootstrap filter” of [13].
This often works poorly, since the regions of high observation
density may not significantly overlap with the regions of high
transition density, particularly if the observation noise variance
is low. The optimal importance density (OID) is the conditional
state posterior,
) ye) = p(adai™) ve). )
However, this density may rarely be sampled exactly or
evaluated analytically. For other models, it is common to use
Gaussian approximations of (1) based on either linearisation
or the unscented transform [3], [4]. These work well when the
OID is unimodal, and the observation nonlinearity is weak, but
can otherwise perform poorly.

gl (|2}

III. PROGRESSIVE PROPOSALS

The progressive proposal method is a procedure for sam-
pling approximately from the OID by introducing the like-
lihood progressively and making a series of local Gaussian
approximations. In order to achieve this, an auxiliary variable
A € ]0,1] is used. Intuitively, this is a stretch of “pseudo-time”
between the predictive and filtering densities, which we link
via a continuous sequence of densities,

Fea(zri—1,e2) X gyl x) F(@ex|zi—1)p(@1—1|y14-1),

(@3]

in which z;  is defined as the state at time ¢ and pseudo-time
A. This filtering sequence includes the predictive density when
A = 0 and the desired filtering density when \ = 1.

State updates are derived by considering a related sequence
of optimal importance densities for each particle,

(a J))
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This sequence begins with the transition density at A = 0 and
finishes with the OID at A = 1.

The progressive proposal procedure begins by sampling
a state for each particle from the transition density and
assigning a predictive weight, in exactly the same manner
as the bootstrap filter. A series of incremental updates are
then applied in order to advance each particle state xij ) and

its associated weight wt(J ) through pseudo-time, so that it is

correctly distributed according to (2) throughout.

From here on, subscript ¢ is omitted for clarity on variables
which vary with \. Particle superscripts are also omitted where
it is unambiguous.

A. State Updates

There is one class of models for which the OID has an
analytic form, those which have a linear observation function
and Gaussian transition and observation densities; the transi-
tion function need not be linear,

flolai—q) = N(Sﬁt |p(xi-1),Q)
9(yelve) = N (ye [Hry, R) .
For such models, the OID sequence (3) is,

ma(@a|zi—1) = N (@x |pr, Zr ),

Sy = [@ '+ AHTR ' H]

pfx = Sx [Q ' (w—1) + AHTR™ 'y] .

Since the OID may be sampled and the density evaluated,
a progressive proposal is redundant. However, the analytic
formulas derived from this case may be used with other classes
of models if local Gaussian approximations are made.

A Gaussian random variable may be written as a linear
transformation of an underlying standard Gaussian random
variable,

1
Ty = px+ X5 2
o~ N(-0,1),

1

where X} is the principal square root of the covariance matrix.
By assuming that the underlying random variable z) is fixed
over pseudo-time, we arrive at an update formula for the latent

state from Ay to Aq,

1 1

Tx, = px, + 2)2\1 2)\02 (‘er - /‘LAO)‘ 4)
For partially linear-Gaussian models, advancing the state
through pseudo-time using (4) generates a particle which is
distributed exactly according to the current density in the OID
sequence. For other models, such exact analytic updates do not
exist. However, in the same manner as for nonlinear extensions
of the Kalman filter, we can use the Gaussian update formulas
if a local approximation to the OID sequence is first formed,

Tajzs (TAlTi—1) =N (m ‘/l,\w,i)\w) ;

where iy~ and XA)/\W are the mean and covariance of
the Gaussian approximation formed at the point x*, which
are themselves functions of A. Such approximations may be
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1: fort =1,2,... do
2 fori=1,...,Nr do
3: if ¢ > 1 then )
4: Select an ancestor, a; = j, with probability 1175]7)1
5 Initialise state by sampling from the transition density, xgl()] ~
Faelais).
6: else )
7: Initialise state by sampling from the prior density, zil()) ~ p(z).
8 end if
9 Initialise pseudo-time, A = 0.
10: Initialise weight, w,ﬁl(), =1.
11: while A < 1 do
12: Increment pseudo-time, A <— A + JA (see text).
13: Update state xill .using ).
14: Update weight wt(%; using (2?).
15: end while ) ) )
16: Finalise, zii) = rili, wil) = wt(q
17:  end for o ' .
. T H T, — z
18:  Normalise weights, Wy = w,"” />0, w” .
19: end for
TABLE 1. PROGRESSIVE PROPOSAL PARTICLE FILTER

formed by linearisation or Taylor series truncation of the log-
density, as in for example [3], [12]. A new approximation is
formed for each incremental update step.

The length of pseudo-time increments may be set at a fixed
step size or they may vary according to some pre-determined
scheme. Due to the geometric nature of the density sequences,
states tend to move more rapidly for A close to 0, so the latter
scheme, with smaller step sizes early on, is preferable. It is
possible to vary step sizes adaptively according to the quality
of the Gaussian approximation at each point.

B. Weight Updates

Suppose we have a particle {z1.+—1,x, } With weight wy,
distributed as 7y,. If a new state z, is generated using (4) in
combination with a Gaussian approximation of m,, and the
old state x, discarded, then the distribution of the unweighted
particle may be updated using the standard change of variable
approach for a probability density,

6x,\0

M (T1—1, T2, ) = Mg (T1:0—1, %) X

8x>\1

Hence, the weight update is,
wy, = T, (T1:0-1,T,)

o (Tree1,ma,)

g(yt|x)\1))\lf(x/\1 |xt*1) x
9(YelTg )20 f (22 [T1-1)

X Wy, X

C. Algorithm Summary
The PPPF is summarised in table ??.

The complexity of the PPPF at time ¢ is O (NpM ), where
N is the number of particles and M the number of update
steps.

IV. SIMULATIONS

Numerical testing using simulated data are presented to
demonstrate the efficacy of the PPPF. Algorithm performance
is assessed through two measures. The accuracy of each
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filter is measured by a root-mean-square error (RMSE) value,
calculated using the weighted average of the particle states
as a point estimate. The quality of the particle population is
measured using the average effective sample size (ESS),

-1

Np. = Z 711,@2 ,
i
which takes a value between 1 and Ng.

The PPPF is compared with the following particle filters
and importance densities:

e A bootstrap filter (BF), using the transition density.

e An extended particle filter (EPF), using a Gaussian
density chosen by linearisation about the predictive
mean, in the style of an extended Kalman filter.

e An unscented particle filter (UPF), using a Gaussian
density chosen using the unscented transform, in the
style of an unscented Kalman filter.

e An optimal Gaussian importance particle filter
(OGIPF), using a Gaussian density chosen by trunca-
tion of the Taylor series of the log of the unnormalised
OID around a local maximum [3]. Gradient ascent is
used to locate the maximum.

The number of particles used by each algorithm was
selected so that the running times were roughly equal. The
PPPF used M = 10 steps per time frame, with smaller step
sizes close to A = 0.

A. The Model

We consider tracking a small aircraft over a mapped
landscape. Time of flight and Doppler measurements from a
radio transmitter on the aircraft provide accurate measurements
of range ¢, and range rate s; to a reference station, but only a
low resolution measurement of bearing 6. In addition, accurate
measurements are made of the height above the ground h;.
The profile of the terrain (i.e. the height of the ground above
a datum at each point) has been mapped.

At ¢, the latent state for our model is,
T
ze=[pf of]
where p; and v; are the 3-dimensional position and velocity
of the aircraft respectively, and the observation is,

)

yt=[9t Ty St]T

The observation function is comprised of,

Pt1
f; = arctan (p) T =\/Piy Pl +Dis
t,2

bt -v
he = pi3 —T(pe,1,pe2) St = %a
t
where T'(p; 1,ps,2) is the terrain height at the corresponding

horizontal coordinates. The four measurements are indepen-
s

. . 2
dent and the respective variances are (%), 0.1%, 0.1%, 0.1%,

A linear transition model is used, based on the near-
constant velocity model with Gaussian innovations,

flxi|ai—1) =N (@ |[Fap-1,Q) ,



2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

200

150

100

50

=& of

50

-100

-150

_200 — L L L L
-200 -150 -100 -50 0 50 100 150 200

Fig. 1. Contour plot of an example simulated terrain map.
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Fig. 2. An example of the PPPF particle motion running on the terrain

tracking model, showing one horizontal and the vertical state component. Prior
states are shown with circles and posterior states with crosses.
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For the simulations presented here, the terrain profile was
modelled as a mixture of randomly-generated Gaussian blobs.
An example is shown in figure 1.

B. Results

The accurate measurements of range, range rate and height
constrain the region of high posterior probability to lie on
a 3 dimensional subspace, which can take some unusual
shapes (see figure 2). This means that particle filters using
simple Gaussian importance densities do not perform well —
the EPF diverges completely and produces no useful results.
Furthermore, the optimal Gaussian importance density method
performs poorly as the maximisation procedure struggles with
the narrow mode.

Figure 2 shows the motion of the particles from the PPPF
on a typical frame, and the awkward shape of the posterior
mode. Table II shows the average ESSs and RMSEs for each
algorithm over 100 simulated data sets, each of 100 time steps.

Repeating the tests with an equal number of particles
for each algorithm, the PPPF still yielded by far the highest
average ESS.
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TABLE II. ALGORITHM PERFORMANCE RESULTS ON THE TERRAIN

TRACKING MODEL.

Algorithm || Np | ESS | RMSE

BF 6000 1.0 78.6
UPF 460 2.4 70.2
OGIPF 10 3.1 62.9
PPPF 180 56.4 223

V. CONCLUSIONS AND EXTENSIONS

The PPPF outperforms other particle filters on complex
nonlinear problems, achieving higher effective sample sizes
and lower estimation errors. This improvement is achieved by
using a multi-stage approximation to the optimal importance
density, and comes at a higher cost in computational load.

Numerous extensions to the algorithm have been devel-
oped, including a generalisation of the algorithm to allow
stochastic evolution of the state through pseudo-time, methods
for selecting step sizes adaptively, the inclusion of Markov
Chain Monte Carlo steps to improve the quality of the particle
population, and modifications for Gaussian mixture models.
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