
Random Pairwise Gossip on Hadamard Manifolds

Anass Bellachehab
Institut Mines-Télécom
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Abstract—In the context of sensor networks, the consensus
problem is an important problem. The goal is to find a distributed
algorithm to reach a consensus, i.e. some common value shared
by all the agents in the network. Such a well known algorithm
is the so-called Random Pairwise Gossip (RPG) [BGPS06]. This
algorithm relies on pairwise arithmetic averages. Therefore, it
does not apply to some situations of interest where computing
arithmetic averages is meaningless. For instance, consensus on
axis orientation, or subspace tracking, or camera position, cannot
be addressed by RPG. However, all these cases exhibit a com-
mon underlying structure: the data belong to some Riemannian
manifold [DC92]. The goal of this paper is to adapt the RPG
algorithm to the Riemannian manifolds framework. Replacing
arithmetic average by midpoints for the metric is a natural idea,
promoted in this paper. However, due to curvature, and contrarily
to the Euclidean case, convergence is no more guaranteed.
However, we show that under suitable curvature assumptions –
namely, nonpositive curvature – convergence can still be ensured.
Numerical experiments validate our approach.
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I. INTRODUCTION

Consensus problems are ubiquitous in distributed environ-
ments: they appear in database management [Bur06], clock
synchronization [SG07], signal estimation in wireless sensor
networks [SG08], to cite a few. Consider, for instance, an ad-
hoc network of low power sensors, where each sensor has
only access to local information of its surrounding environ-
ment. Due to hardware and energy constraints, long range
communication between sensors is proscribed, and only short
distance communications are reliable enough for consideration.
The goal is to devise a protocol to achieve consensus among
the sensors, without resorting to any central fusion node. If the
measurements belong to some vector space, e.g. temperatures,
speeds, or locations; Gossip protocols [BGPS06] are efficient
candidates.

However, there are several interesting cases where mea-
surements cannot be added or scaled as vectors. Camera
orientations are such an example: it does not make sense
to add two orientations. There are several other examples of
interest: subspaces, curves, angles have no underlying vector
space structure. All these cases are properly addressed by the
framework of Riemannian manifolds [DC92]. Sometimes the
situation is more subtle: there is a vector space structure, but
it is not well adapted to the problem considered. Information
geometry [ABNK+87] is such an example, where it has been
shown that using the Riemannian structure to compute gradi-
ents could give better results than using Euclidean gradients.

Prior work. Consensus on manifolds has already been the
subject of several recent works [SSS07], [SS09], [SBS10],
[Bon13], [TAV11]. Existing approaches use the following
viewpoint: distances between measurement make sense in the
Riemmanian setting as much as in the Euclidean setting.
Consensus is interpreted as a global minimum of ∆ =∑
v∼w d(xv, xw)2 where the sum runs over all connected

agents (notations are clarified below). Hence, tools from opti-
mization on manifolds can be used to address the consensus
problem. In [Bon13], [TAV11], a gradient descent is used. In
[TAV11] the network is implicitly assumed synchronous, i.e.
able to perform computations when some common clock ticks.
While in [Bon13], the network is assumed asynchronous –
which inevitably brings noise – and for convergence to hold,
the stepsize goes to 0 with time (in a precise way).

Paper contribution. In this paper we propose an intrinsic
and very simple algorithm to achieve consensus in Riemannian
manifolds. It is a very natural adaption of the Random Pairwise
Gossip (RPG) algorithm [BGPS06] and does not use tools
from optimization. Like the RPG, it works in asynchronous
networks because like the RPG only two neighbors wake
up at a given time. Yet, in our case, it is not necessary to
decrease the stepsize. For general manifolds, convergence is
hopeless. However, we prove that in the case of nonpositive
sectional curvature [DC92] manifolds, referred to as Hadamard
manifolds in the literature, convergence can be guaranteed.
This curvature assumption would exclude the camera ori-
entations manifold which is of positive curvature. But it
encompasses several members of the exponential family in
information geometry as well as the space of positive definite
matrices. Moreover, we prove, and it appears in the numerical
experiments performed and reported in this paper, that the
proposed algorithm, besides its simplicity, is also efficient.
However, unlike the RPG; the proposed algorithm does not
necessarily converge towards center of mass. It only converges
to an arbitrary consensus state.

The rest of the paper is organized as follows. Section II
describes the assumptions made on the network and the
data. Section III details the proposed algorithm and state a
convergence result along with a convergence speed result. Nu-
merical experiments are provided in section IV and section V
concludes the paper.
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II. FRAMEWORK

A. Network

We consider a network of N agents represented by an
undirected graph G = (V,E), where V = {1, . . . , N} stands
for the set of agents and E denotes the set of available commu-
nication links between agents. A link e ∈ E is given by a pair
{v, w} where v and w are two distinct agents in the network
that are able to communicate directly. Note that the graph is
assumed undirected, meaning that whenever agent v is able
to communicate with agent w, the reciprocal communication
is also assumed feasible. This assumption makes sense when
communication speed is fast compared to agents movements
speed. When a communication link e = {v, w} exists between
two agents, both agents are said to be neighbors and the link is
denoted v ∼ w. We denote by N (v) the set of all neighbors of
the agent v ∈ V . The communication framework considered
here is standard [BGPS06].

The graph is assumed to be connected, which means that
for every two agents u, v there exists a finite sequence of agents
w0 = u, . . . , wd = v such that:

∀0 ≤ i ≤ d− 1 : {wi, wi+1} ∈ E

This means that each two agents are at least indirectly related.

B. Time

As in [BGPS06], we assume that the time model is asyn-
chronous, i.e. that each agent has its own Poisson clock that
ticks with a common intensity λ (the clocks are identically
made), and moreover, each clock is independent from the
other clocks. When an agent clock ticks, the agent is able
to perform some computations and wake up some neighboring
agents. This time model has the same probability distribution
than a global single clock ticking with intensity Nλ and
selecting uniformly randomly a single agent at each tick. This
equivalence is described, e.g. in [BGPS06]. Notice also that
link e = {v, w} is not necessarily used by agents v and w at
a given time.

C. Data

Each node v ∈ V stores data represented as an element xv
of a Riemannian manifold M [DC92]. Initially each node v
has an initial value xv(0) and X0 = (x1(0), . . . , xN (0)) is the
tuple of initial values of the network. We would like to find
an interactive algorithm that, from an initial state x(0) takes
the system to a consensus state; meaning a state of the form
X∞ = (x∞, . . . , x∞) with: x∞ ∈ M. We denote by xv(k)
the value stored by the agent v ∈ V at the k-th iteration of
the algorithm, and Xk = (x1(k), . . . , xN (k)) the global state
of the system at instant k.

D. Manifolds

Let M be a connected n dimensional Riemannian man-
ifold. For p ∈ M we denote by TpM the tangent space to
M at p [DC92], the tangent space is a vector space with the
same dimension asM. A metric is a smooth collection of dot
products 〈, 〉p on TpM for p ∈ M. A smooth curve in M
is a smooth function c : [0, 1] → M, the length of the curve
is define as the quantity: L(c) :=

∫ 1

0
〈c′(t), c′(t)〉c(t)dt. Using

this definition, the notion of distance between two points x
and y ∈M is defined by: d(x, y) := inf{c|c(0)=x;c(1)=y} L(c).

A curve γ(t) between x and y verifying: L(γ) = d(x, y)
is called a geodesic. If such a curve exists and is unique, we
denote it by [x, y]. This notation suggests that the notion of
geodesic is the Riemannian analog to that of line segment. The
manifoldM is said complete if for every couple (x, y) ∈M2

a geodesic between x and y exists.

We also define the midpoint of x and y (assuming existence
and uniqueness of the geodesic):〈

x+ y

2

〉
:= [x, y]

(1

2

)
It is important to notice that notation 〈x+y2 〉 denotes the
midpoint of [x, y] in the manifold and involves actually no
addition nor dilation. Obviously in the Euclidean case the two
notions (“midpoint” and “arithmetic mean”) coincide.

For p ∈ M and σ a 2-dimensional subspace of TpM
we denote by Kp(σ) the sectional curvature of σ [DC92].
A manifold is said to be a Hadamard manifold if and only if:

∀p ∈M, σ ⊆ TpM : Kp(σ) ≤ 0

In the following, we assume M to be a Hadamard manifold.
It can be proven that a Hadamard manifold is also a complete
manifold, and for all (x, y) ∈M2 the geodesic between x and
y is unique.

With these assumptions in mind (connected graph, Poisson
clocks, Hadamard manifold), we propose the following con-
sensus algorithm:

III. ALGORITHM

A. Description

At each count of the virtual global clock one node v is
selected uniformly randomly from the set of agents V . The
node v then randomly selects a node w from N (v). Both node
v and w then compute and update their value to 〈xv+xw

2 〉.

Algorithm Random Pairwise Midpoint
Input: a graph G = (V,E) and the initial nodes configura-
tion xv(0), v ∈ V
for all k > 0 do

At instant k, uniformly randomly choose a node vk from
V and a node wk uniformly randomly from N (vk).
Update:
xvk(k) =

〈
xvk

(k−1)+xwk
(k−1)

2

〉
xwk

(k) =
〈
xvk

(k−1)+xwk
(k−1)

2

〉
xv(k) = xv(k − 1) for v 6∈ {vk, wk}

end for

B. Convergence result

Under the assumptions of section II, i.e., homogeneous
Poisson clocks, connected and nonpositive sectional curvature
for the manifold, we have the following result that is given
without proof due to space constraints:
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Theorem 1 (Almost sure convergence). Let Xk =
(x1(k), ..., xN (k)) denote the sequence generated by Algo-
rithm Random Pairwise Midpoint, there exists x∞ ∈ M such
that almost surely, lim

k→∞
Xk = X∞ := (x∞, . . . , x∞)

Let us discuss the nonpositivity assumption on manifold
curvature. Indeed, even if the previous algorithm mimics the
RPG algorithm, its behavior can be actually quite different in
the case of positive curvature. Consider for instance the case
where M = {(x, y, z) : x2 + y2 + z2 = 1} is the sphere of
dimension 2. It is a Riemmanian manifold as a submanifold
of the Euclidean space of dimension 3 with constant positive
sectional curvature (all curvature notions are the same in
dimension 2). For the network, consider the complete graph K4

with 4 elements (V = {1, 2, 3, 4} and E contains all possible
edges).

Assume the initial data is x1(0) = x2(0) = (1, 0, 0) and
x3(0) = x4(0) = (−1, 0, 0).The configuration will remain
stuck in this position except if agents 1 or 2 communicates
with 3 or 4 in which case the midpoint is not uniquely defined
since (1, 0, 0) and (−1, 0, 0) are antipodal points. Even if one
tries to perturb the data to get a well defined midpoint, the
configuration can go near another pair of antipodal points.

We now define the disagreement function.

Definition 1. Given a configuration x = (x1, . . . , xN ) ∈MN

the disagreement function ∆(x) =
∑
v∼w d(xv, xw)2.

Function ∆ measures how much disagreement is left in the
network. Indeed, when the network is connected, ∆ is 0 if and
only if the network is at consensus; and the following result
shows that, still under the assumptions of section II, ∆ goes
to 0 exponentially fast.

Theorem 2 (Convergence speed). Let Xk =
(x1(k), ..., xN (k)) denote the sequence of random variables
generated by Algorithm Random Pairwise Midpoint, there
exists L < 0 such that,

lim sup
k→∞

logE∆(Xk)

k
≤ L

The proof shows that one can actually choose constant L
independently from the manifold M and initial configuration
x0: it depends only on the graph structure. However, a lower
bound for the lim sup would typically depend on M and X0.

The proofs will be provided in an extended version of this
paper. We only give here the underlying idea.

Sketch of proof. Both theorems are proved using a compar-
ison argument for triangles in Euclidean and Hadamard geom-
etry. We show that function ∆ contracts more when curvature
is negative than in the Euclidean case where curvature is zero
and both results are well known.

IV. NUMERICAL SIMULATIONS

In this section we simulate Algorithm Random Pairwise
Midpoint using two examples of Hadamard manifolds. First,
we focus on the case of statistical manifolds [AN00]. Then,
we study an example using positive definite matrices as data.

A. Statistical manifolds

The typical scenario here is the following: sensors fit
some parametric model in the exponential family; then, they
exchange with the rest of the network and try to find a
consensus on the model parameters. Thus, in this scenario,
the network is only used after all sensors have processed their
data and estimated their parameters. This could be of interest
when communication links are not available during estimation,
or too costly to use. Two simple models are simulated: (i)
the exponential model, suitable for modeling inter-arrival time
of customers or serving time or other type of duration and
(ii) the Gaussian model which is ubiquitous. Both model fall
into the general exponential family; which is equipped with a
Riemmanian metric as described below.

Consider an open set Θ ⊂ Rn indexing a family of
probability distribution over some set X with some common
reference measure µ; their density function wrt µ is denoted
pθ, with θ ∈ Θ. Also denote l(x; θ) = log pθ(x) the log-
likelihood function and to θ = (θ1, . . . , θn) ∈ Θ, its n × n
Fisher information matrix with coefficients given by:

gi,j =

∫
X

(
∂l

∂θi
∂l

∂θj

)
pθ(x)µ(dx)

Then (Θ, g) is a Riemmanian manifold.

The numerical examples studied in this paper belong to the
exponential family (in canonical form), θ = (θ1, . . . , θq),

log pθ(x) = C(x) +

q∑
i=1

θiFi(x)− ψ(θ)

for some functions C, ψ and Fi.

Example 1:(Ordinary exponential law)

To recover the iid exponential distribution from the expo-
nential family, set X = {(x1, . . . , xq) : ∀1 ≤ i ≤ q, xi ≥ 0},
the parameter space is: Θ = {(θ1, . . . , θq) : ∀1 ≤ i ≤
q, θi ≥ 0}. Set the functions {C,F1, . . . , Fq} as: C(x) =
0, Fi(x) = −xi, ψ(θ) =

∑
i log(θi), so that to recover the

density function: pθ(x) =
∏
i θ
−1
i exp(−

∑
i θixi). In this

example we find that the geodesic between two elements pλ
and pθ is of the form pγ(t) where: ∀i ∈ {1, . . . , q}, t ∈ [0, 1] :

γi(t) = λi

(
θi
λi

)t
;

Hence, Algorithm Random Pairwise Midpoint writes:
θvn(n) = θwn

(n) =
√
θvn(n− 1) ◦ θwn

(n− 1) where θv(n)
denotes the estimation of θ by agent v at time n, ◦ denotes
the componentwise product, and √ is taken componentwise.
In this example, q = 1, θv(0) was sampled iid uniformly from
(0, 1)q , for the graph of the network we use the complete graph
KN (N=10) and run Algorithm Random Pairwise Midpoint.
In figure 1 the blue curve represents the logarithm of the dis-
agreement function with respect to iterations n 7→ log ∆(Xn),
we observe a straight line with negative slope which indicates
exponential convergence to consensus.

Example 2:(The normal distribution) To recover the normal
distribution, set X = R, q = 2, Θ = {(θ1, θ2) : θ1 ≥ 0, θ2 ∈
R}, C(x) = 0, F1(x) = x2, F2(x) = x, ψ(θ) = log( πθ1 ) +

θ22
θ1

,

so that: pθ(x) =
√

θ1
π exp

(
−θ1(x− θ2

2θ1
)2 + ( 3θ2

4θ1
)2
)

.

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

143



The family of Gaussian statistical models has constant
negative sectional curvature K = −1

2 (for a computation
of the metric, Christoffel symbols and sectional curvature
see: [ABNK+87, p.190] ). In this example we have a 2
dimensional manifold; Algorithm Random Pairwise Midpoint
was implemented using a discrete numerical solving technique
for the geodesic equations.We use the same graph, Evolution
of the log disagreement function log ∆n when n increases is
represented by the green curve in Figure 1. One can observe
convergence to consensus at an exponential rate.

B. Positive definite matrices

The scenario in this experiment is the following. Each
sensor in a network estimates a covariance matrix for some
observed multivariate process. Then the network seeks a
consensus on these covariance matrices. We implemented the
proposed algorithm using known facts from the geometry of
positive definite matrices [Lan99, chap. 12]. In particular,
[Lan99, p.326]: d(M,N)2 = tr{log(MN−1) log(MN−1)T }
and 〈M+N

2 〉 = M1/2(M−1/2NM−1/2)1/2M1/2. It is straight-
forward to implement Algorithm Random Pairwise Midpoint
and compute log ∆

(
M(n)

)
at each iteration n; where M(n) =

(M1(n), . . . ,MN (n)) denotes the tuple of positive definite
matrix held by the agents 1 ≤ v ≤ N at time n. We generated
Mv(0) as

∑p
k=1Xk,vX

T
k,v where Xk,v ∼ N (0, Iq) are inde-

pendent standard multivariate Gaussian vectors of dimension q
(in the numerical experiment q = 5,and we assume a complete
graph). Note that the algorithm proposed is very close to
the one proposed in [Bon13] which consists in the iterations
M1/2(M−1/2NM−1/2)γnM1/2 where γn is a sequence of
stepsize such that

∑
n γn = +∞ and

∑
n γ

2
n < ∞. In

particular stepsize γn should go to 0 while in our case it is kept
constant at 1/2. The red and sky blue curves in figure 1 repre-
sent the function log(∆n) for respectively the gradient descent
method (implemented with a decreasing step size γn = 1

n )
and consensus midpoint algorithm; the initialization and graph
used for both algorithms being the same, the two curve can be
compared so as to deduce that while the consensus midpoint
algorithm leads to exponential convergence, the log(∆n) curve
for the gradient descent method seems to converge slower.
Actually the fact that it converges slower is coherent with
stochastic approximation with decreasing stepsize. Indeed, it
is known that, in the Euclidean setting [KY97, chap. 10], for
stepsize γn, the speed of convergence is of order γn−1/2.

V. CONCLUSION

We have presented an extension to the (RPG) to the Case
of Riemannian manifolds in the asynchronous pairwise case.
We identified a set of conditions (nonpositive curvature) that
guarantees the convergence of the Random Pairwise Midpoint
algorithm. Convergence towards an aribitrary consensus state
occurs at exponential speed. Our experiments with statistical
manifolds and positive definite matrices confirm those results
and validate our approach.
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