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Abstract—In this paper we extend Gaussian graphical models
to proper quaternion Gaussian distributions. The properness
assumption reduces the number of unknowns by a factor of four
and allow for improved accuracy. We begin by showing that the
unconstrained proper quaternion maximum likelihood problem is
convex and has a closed form solution that resembles the classical
sample covariance. Then, we proceed and add convex sparsity
constraints to the inverse covariance matrix and minimize them
using convex optimization toolboxes. Finally, we show that in
the special case of chordal graphs, the estimates follow a simple
closed form which aggregates the unconstrained solutions in each
of the cliques. We demonstrate the performance of our suggested
estimators on both synthetic and real data.

Index Terms—Quaternions, covariance estimation, graphical
models, chordal graphs

I. INTRODUCTION

Covariance estimation is a fundamental problem in the
field of statistical signal processing, and many algorithms
for detection and estimation rely on accurate solutions to
this problem [1], [2]. When the number of samples is larger
than the matrix dimension, the Gaussian maximum likelihood
(ML) coincides with with the sample covariance estimator
and the problem can be easily solved. However, in many
modern applications this assumption does not hold and we
are faced with high dimensional parameter estimation from
a small number of samples. The standard approach to such
scenarios is to reduce the degrees of freedom by imposing low
order models. Gaussian graphical models reduce the number
of unknowns by assuming sparsity on the inverse covariance
matrix. Proper models reduce the degrees of freedom by
imposing symmetry constraints. In this paper, these two types
of structures are combined into proper quaternion Gaussian
graphical models.

The main idea of graphical models is to represent a multi-
variate probability distribution over a set of random variables,
exploiting its underlying structure stemming from conditional
independence properties. A Markov network is a graph whose
vertices represent random variables and whose edges repre-
sent conditional statistical independence. Two variables are
statistically independent given the rest if there is no edge
between their vertices. In case of a Gaussian distribution
this is equivalent to a sparse inverse covariance matrix. The
maximum likelihood estimation of the inverse covariance with
known sparsity constraints is convex, whereas the problem of
learning the sparsity pattern can be solved via convex L1 norm
structure learning [3]. When the graphical model is chordal

(also known as decomposable), the minimization has a closed
form solution which aggregates the local estimates in each of
the cliques of the graph [4]–[7].

Quaternions are a four element generalization of complex
numbers and allow for convenient and effective statistical mod-
eling of multichannel signals. The need to better model such
signals stems from several technological developments that
require handling of four element signals. One such example
is a radar with two polarizations. Recent work on quaternion
signal processing with includes [8], [9].

In this paper, we combine Gaussian graphical models with
the proper quaternion structure. First, we show that the proper
quaternion Gaussian assumption reduces the number of un-
knowns in the covariance estimation problem by four. We then
prove that for proper quaternion Gaussian random variables,
the problem of sparse inverse covariance estimation is convex
and can be solved using off-the-shelf optimization packages.
In addition, in the important case of chordal graphs, the
minimization has a simple closed form solution that aggregates
the unconstrained proper solution on each of the cliques. As
a byproduct, we prove that the strong product of a chordal
graph with a graph represented by a square matrix of ones
is chordal. This paper is the short version of [10], where all
further details and proofs can be found.

II. PROPERNESS

We begin with a brief overview of the concept of properness.
A zero mean complex random vector is called proper if
its probability distribution is invariant to rotations. Similarly,
a zero mean quaternion random vector is called proper if
its probability distribution is invariant to a specific type of
rotation. Quaternion variables are an extension of complex
numbers to hyper-complex numbers with 4 elements. A quater-
nion matrix has one real part and three imaginary parts:

Z = A+ iB+ jC+ kD. (1)

Multiplication by a unit norm quaternion is equivalent to a
rotation. A general quaternion rotation requires both a left and
a right multiplication

z′ = eν1θ1zeν2θ2 (2)

with some pure imaginary unit quaternions ν1 and ν2 and
some angles θ1 and θ2. A standard definition of quaternion
properness involves only the right rotation and assumes ν1 =
θ1 = 0 (See [11], [12] for more details on this definition and its
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complementary left rotation). Thus, in this paper, a quaternion
is proper if the second order statistics of z equals the second
order statistics of zeνθ for all possible angles and for all pure
unit quaternions ν, i.e.

zeνθ ∼ z (3)

It is convenient to represent the quaternion in (1) using three
real-valued notations, see e.g. [13]:

Z̃ =


A
B
C
D

 Z =


A −B −C −D
B A −D C
C D A −B
D −C B A

 (4)

Ẑ =


A −B −C −D
B A D −C
C −D A B
D C −B A

 . (5)

Hereinafter, we use the tilde, the overline and the hat operators
to denote these three representations. Using these operators, a
right quaternion rotation can be written as

z′ = zeνθ ⇔ z̃′ = Rνθz̃ (6)

where Rνθ is defined as Rνθ = êνθ ⊗ Ip. This leads to the
following definition of properness: A covariance matrix C is
proper if C ∈ Qp where

Qp = {C ∈ R4p×4p
++ : C = RνθCRT

νθ ∀ ν : ∥ν∥ = 1, θ}. (7)

Note that this definition shows that quaternion properness is
similar to the case of group symmetry as defined in [14]. This
observation is actually the motivation for the current paper.
Our first result is a simple equivalent condition for properness
which involves only a finite number of constraints.

Lemma 1. An equivalent definition of Qp in (7) is

Qp = {C ∈ R4p×4p
++ : ∃A,B,C,D : C satisfies (9);

A = AT ;B = −BT ;C = −CT ;D = −DT } (8)

where

C =


A −B −C −D
B A −D C
C D A −B
D −C B A

 (9)

In addition, since C is positive definite then C−1 is also
positive definite and C ∈ Qp iff C−1 ∈ Qp.

III. PROPER QUATERNION COVARIANCE ESTIMATION

In this section, we consider covariance estimation under
properness constraints. The problem is to find the estimate
that maximizes the likelihood of n independent and identically
distributed realizations of a length 4p Gaussian random vector,
denoted by z̃1, · · · , z̃n. The likelihood is given by

l (Cz̃z̃) =
∑n

i=1 z̃
T
i C

−1
z̃z̃ z̃i − nlogdet

[
C−1

z̃z̃

]
. (10)

The following result provides closed form solutions to this
optimization problem with and without proper constraints.

Theorem 1. Let z̃ ∈ R4p be a Gaussian random vector
with zero mean and a covariance Cz̃z̃ ∈ Qp, z̃ the real
representation vector of a quaternion z ∈ Hp. Consider the
Gaussian ML problem

minCz̃z̃
l(Cz̃z̃). (11)

If n > 4p the solution exists with probability one and is

S , 1

n

n∑
i=1

z̃iz̃
T
i , (12)

otherwise the solution is unbounded. Next, consider the prob-
lem with an additional proper quaternion constraint

minCz̃z̃
l(Cz̃z̃)

s.t. Cz̃z̃ ∈ Qp
. (13)

If n > p the solution to this problem exists with probability
one and is

Sh , 1

4n

n∑
i=1

ziz
T
i , (14)

where zi ∈ R4p×4 is the real matrix representation of zi.
Otherwise the solution is unbounded.

In an attempt to further improve our estimation by taking
into account additional prior knowledge, we move on to
formulate quaternion Gaussian graphical models.

IV. PROPER QUATERNION GRAPHICAL MODELS

A modern approach to large scale covariance estimation
modifies the optimization in order to exploit additional prior
knowledge. In particular, Gaussian graphical models allow
for additional sparsity constraints. The sparsity pattern is
conveniently modeled via graphs. Let G(V,E) be a graph
with vertices V = {v1, · · · , vp} and an edge set E. We
say that a real valued p-variate Gaussian random vector x
follows G(V,E) if xi and xj are conditionally independent
given the rest of the elements in x for all non-adjacent
vertices in the graph. Using simple algebra this leads to
[K]i,j = 0 ∀(i, j) /∈ E, where K = C−1 ∈ Rp×p is the
inverse covariance matrix.

Moving on to extend this to the quaternion case, let z̃ ∈
R4p be the real representation of a proper quaternion Gaussian
random vector with n observations z̃1, ...z̃n ∈ R4p. Let Cz̃z̃ be
the covariance matrix of z̃, and let G(V,E) be the associated
graphical models with 4p nodes. From Lemma 1 we know that
Kz̃z̃ ∈ Qp leading to the following ML inverse covariance
estimation problem

minKz̃z̃
l(K−1)

s.t. Kz̃z̃ ∈ Qp

[Kz̃z̃]i,j = 0 ∀(i, j) /∈ E.
(15)

Using the characterization of Qp in Lemma 1, this is a convex
minimization with a finite number of linear constraints. As
such, it can be easily solved using existing convex optimization
toolboxes, e.g., CVX [15], [16].
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In some applications, it is more reasonable to assume that
Kz̃z̃ is sparse but the pattern is unknown. In this case, we can
jointly detect the structure and estimate Kz̃z̃ using sparsity
enforcing penalties, e.g., the L1 norm:

minKz̃z̃
l
(
K−1

)
+ λ∥Kz̃z̃∥1

s.t. Kz̃z̃ ∈ Qp

[Kz̃z̃]i,j = 0 ∀(i, j) /∈ E.
(16)

V. PROPER QUATERNION CHORDAL MODELS

In this section we discuss the important case of chordal
graphs. We will show that in this case the proper quaternion
ML problem in (15) satisfies a closed form solution and does
not require the use of optimization packages.

A graph is chordal (also known as decomposable) if it can
be represented using a junction tree. A clique is a maximal
subset of vertices that are fully connected and is denoted by C.
A junction tree T is a tree whose vertices are usually referred
to as nodes. Each node contains a subset of the graph vertices
that form a clique (see [17]). We use the term separator to
refer to the minimal separator between two sets, see [18, page
6].

To appreciate chordal graphical models, it is instructive
to recall the standard chordal solutions for real-valued (non-
quaternion) distributions. Consider the unconstrained opti-
mization problem in (15), excluding the constraint Kz̃z̃ ∈ Qp

where E is the edge set of a chordal graph with cliques Ci

and separators Si. Its solution is [4, Proposition 5.9]

Kz̃z̃ =
K∑

k=1

[
(SCk,Ck

)
−1

]0
−

K∑
k=2

[
(SSk,Sk

)
−1

]0
(17)

where S is defined in (12), and the zero fill-in operator [·]0
outputs a matrix of the same dimension as Kz̃z̃ where the
argument occupies the appropriate sub-block and the rest of
the matrix has zero valued elements. Note how (17) simply
aggregates the inverse local sample covariances and then
subtracts their intersections.

The rest of this section is devoted to finding a similar so-
lution to proper quaternion chordal models. More specifically,
we assume the following structure. Due to Lemma 1, the
proper inverse covariance is parameterized via A, B, C and
D. We will assume that these matrices have the same chordal
sparsity pattern. This pattern is defined via a G ∈ Rp×p

adjacency matrix. The augmented matrix Ga ∈ R4p×4p is
defined as

Ga = G
⊗

I4 (18)

where I4 is a 4 × 4 identity matrix and
⊗

denotes the
Kronecker product. Suppose vi is the ith vertex in G. Ga

contains four times more vertices. In what follows we denote
by v1i, v2i, v3i, v4i the copies of vi in Ga. The advantage of
this specific form of augmented matrix lies in the following
result.

Theorem 2. If the graph induced by some matrix G ∈ Rp×p

is chordal with cliques Ck and separators Sk, k = 1, ...,K,
then the graph induced by a matrix Ga = G

⊗
IN , where

IN is an N ×N matrix of ones is also chordal with cliques
Ca

k and separators Sa
k . If a vertex vi ∈ Ck or vi ∈ Sk in

graph G, then v1i, v2i, ..., vNi ∈ Ck or v1i, v2i, ..., vNi ∈ Sk

in graph Ga.

With the power of Theorem 2, we obtain a closed form
solution to the proper and chordal ML optimization problem.

Theorem 3. Let z̃ ∈ R4p be a Gaussian random vector with
inverse covariance Kz̃z̃ ∈ Qp. The unconstrained chordal
solution to

minKz̃z̃
l
(
K−1

z̃z̃

)
s.t. [Kz̃z̃]i,j = 0 ∀(i, j) ̸∈ Ea,

(19)

where Ea is the edge set of the graph induced by Ga. When
the graph induced by G is chordal the solution is

Kz̃z̃ =
K∑

k=1

[(
SCa

k ,C
a
k

)−1
]0

−
K∑

k=2

[(
SSa

k ,S
a
k

)−1
]0

(20)

where S(·)ak,(·)
a
k

is the sample covariance over clique Ca
k or

the separator Sa
k in the graph induced by Ga using z̃i. The

solution exists for n > 4max |Ck| with probability one and is
unbounded otherwise, where Ck are the cliques in the graph
induced by G.

The constrained chordal solution to

minKz̃z̃
l
(
Kz̃z̃

−1
)

s.t. [Kz̃z̃]i,j = 0 ∀(i, j) ̸∈ Ea

Kz̃z̃ ∈ Qp

(21)

is

Kz̃z̃ =
∑K

k=1

[(
ShCa

k ,C
a
k

)−1
]0

−
∑K

k=2

[(
ShSa

k ,S
a
k

)−1
]0 (22)

where Sh is defined in (14), is the quaternion sample co-
variance defined in (14). Therefore Sh(·)ak,(·)

a
k

is the sample
covariance over clique Ca

k or the separator Sa
k in the graph

induced by Ga, as defined in Theorem 2, using zi. The solution
exists for n > max |Ck| with probability one and is unbounded
otherwise, here Ck are the cliques in the graph induced by G.

VI. SIMULATIONS

In this section, we present numerical results testing the
suggested quaternion estimators on a real world dataset. We
used the McMaster IPIX radar data available online [19].
This radar is a fully coherent X-band radar that was used
to measure sea clutter data. We used data from the file
19980227 213016 antstep.cdf in the Grimsby database which
was collected on the shore of Lake Ontario. The file contains
two complex valued matrices Xvv and Xhh of dimensions
60000 × 28, representing the vertical and horizontal polar-
izations respectively. The 60000 rows are different time slots
and the 28 columns belong to different points in space. We
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used the 14th column as the cell under test and used columns
10 − 13 and 15 − 18 for estimating the clutter’s unknown
covariance. At each experiment, we used a different group
of length 6 adjacent rows. To compute detection rates, we
artificially added normalized random targets with independent,
zero mean and unit variance normal random variables. We then
tried to detect these targets using a whitened matched filter
approach:

z̃T Ĉ−1t̃ ≷ γ (23)

where z̃ is the measured vector, Ĉ is the estimated covariance
as described below, t is the known target and γ is the detection
threshold. We tested five covariance estimators:

• I: no whitening.
• S: the sample covariance in (12).
• Q: the proper sample covariance in (14).
• BS: the banded estimator in (20).
• BQ: the banded proper estimator in (22).

Note that a banded structure corresponds to a time-varying
autoregressive model which seems appropriate for modeling
the clutter’s time series [5]. This is a simple chordal model
and we used the efficient closed form solutions. The bandwidth
for the banded estimators (also known as the order of the
autoregressive model) was chosen through a standard leave-
one-out cross validation procedure. We repeated the experi-
ment over 1000 different time slots, and report the average
results in the ROC curve depicted in Fig. 1. It is easy to
see that S has the worst performance. Clearly, it has too
many unknowns and does not succeed in approximating the
clutter’s true covariance, to the point the I which means
no whitening at all shows better results. The BS estimator
considerably decreases the number of unknowns and provides
improved performance. But this estimator does not exploit the
(presumed) proper quaternion structure. The best results are
obtained by the proper estimators with an advantage to BQ
which enjoys the advantages of both worlds: graphical models
and quaternions.

Fig. 1. ROC curve for IPIX data with covariance estimation of dimension
6 using 8 observations from neighboring cells and a target of length 6.

VII. CONCLUSIONS

In this paper, we have extended Gaussian graphical model
to proper quaternion Gaussian distributions. We considered
proper quaternion maximum likelihood estimators in differ-
ent scenarios: unconstrained, known sparsity, known chordal
sparsity and unknown sparsity. The proposed estimators allow
for a physically motivated reduction of unknown parameters,
e.g., in a properly polarized time varying autoregressive model.
Thus, they achieve high accuracy using a very small number
of observations. The estimators were assessed on real radar
data and demonstrated improved performance compared to the
standard approaches.
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