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Abstract—This paper considers the online disturbance detec-
tion in smart grids by using multiple sensors, which sample
the power signal and communicate wirelessly to a fusion center
that detects the occurrence of abnormal disturbance. Under
the sequential change detection framework, we first introduce
a generalized local likelihood ratio (GLLR) detector based on
an autoregressive model for the disturbance. Then we propose
a decentralized GLLR detector, where each sensor computes
its own GLLR statistic, adaptively samples them using a level-
triggered sampling scheme, and transmits the samples to the
fusion center. The proposed decentralized disturbance detection
scheme substantially lowers the communication overhead, while
its performance is close to that of the centralized scheme.

I. INTRODUCTION

Nowadays the power quality has become a critical concern
for the emerging smart grids, due to the rapidly growing
number of equipments that not only generate but also are
sensitive to various disturbances. One crucial task is the real-
time detection of power quality disturbance in the process
of observing either the voltage or the current signal. In this
paper, we focus on the voltage disturbance while the method
for detecting current disturbance follows similarly. A voltage
disturbance consists of any deviation of the actual voltage
signal from the nominal sinusoidal waveform with prescribed
amplitude and frequency. The real-time disturbance detection
enables the power system to promptly respond to the detrimen-
tal fluctuations caused by the generator and load operations,
abrupt environment change (e.g., lightning strike), etc. More-
over, it also triggers the abnormal data recording, which helps
electricity providers to perform off-line assessment. However,
the monitored data in practice are always corrupted by noise,
which could deteriorate the detection performance, leading to
frequent false alarms or large decision delay. The fundamental
goal is to detect the disturbance from the noisy observed
voltage signal as soon as possible after its occurrence, so that
certain protection measures can be taken in time before any
severe damage is incurred and/or the data recording process is
activated immediately.

Thus far, one of the most widely used disturbance detec-
tion methods is by monitoring the root mean square (RMS)
sequence, which is computed over a sliding window of length
W (usually half-cycle of the nominal waveform) as Q(n) =√

1
W

∑n
k=n−W+1 y

2
k, where yk is the kth sample of the

voltage waveform. A disturbance is detected once the RMS
exceeds a prescribed threshold. However, since no statistical
property of the observed waveform is exploited, the RMS
method is inefficient for the noisy observations. In addition, the
time resolution of the detection is decreased by the window
for computing RMS. Other methods detect the distortion in

the frequency domain, mainly by the wavelet transform or the
short-time Fourier transform [1]. These methods are limited
by the size of the window over which the transformation
is performed, and they are less effective in the presence of
noise. A promising approach to mitigate the noise is to employ
the statistical framework of hypothesis testing. In [2], the
likelihood ratio test are employed to de-noise the wavelet
transform coefficients, which is a fixed-sample size approach
rather than a sequential one, thus is inefficient in terms of
time resolution. In [3], under the sequential change detection
framework, a weighted CUSUM test was introduced, by ex-
amining the different distributions of the observed waveforms
before and after the occurrence of the disturbance. However,
the disturbance signal is assumed to be independent over time.

In this paper, we also formulate the online voltage monitor-
ing as a sequential change detection problem. But compared
to [3], we build our framework on the autoregressive (AR)
model, which captures the time correlation of the disturbance,
and thus provides more realistic characterization. Moreover,
we consider the scenario where multiple sensors are employed
for monitoring the voltage waveform and they communicate
wirelessly with a fusion center, which is responsible for
making decisions. In particular, deploying multiple sensors
provides diversity across the sensors, thus enables quicker
detection of the occurrence of the disturbance.

The reminder of this paper is organized as follows. In
Section II, we introduce the generalized local likelihood ratio
(GLLR) change detection scheme based on the AR model. In
Section III, we propose the decentralized GLLR test based on
the level-triggered sampling. Simulation results are provided
in Section IV.

II. GLLR SEQUENTIAL DETECTION SCHEME

Suppose there are L sensors that communicate with a
fusion center, which makes the decision on change occurrence.
Without loss of generality, we assume that the disturbance
occurs at some unknown time t0. That is, before t0 the
voltage waveform is a sinusoid with the nominal magnitude,
frequency and phase: f nominal

n = a0 sin(2πf0n + ϕ0). After
t0, the disturbance distorts the nominal sinusoid. Assuming
that the parameters {a0, f0,ϕ0} take prescribed values, we
can subtract the nominal waveform from the measurement to
isolate the disturbance components from the noisy observed
signal [3]. That is, the observed signal after pre-processing
before the disturbance occurs consists of white Gaussian noise:

y(ℓ)n = ν(ℓ)n ∼ N (0,σ2
ν), n < t0, ℓ = 1, 2, . . . , L, (1)

where y
(ℓ)
n is the observation from the ℓth sensor at time n.

It is assumed that the noise is independent in time and across
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sensors. On the other hand, with the subtraction of the nominal
sinusoid, the observed waveform after t0 consists of only
disturbance and noise. Following [4], we use an AR model
to characterize the disturbance signal, which is popular in
analyzing the spectral property of various types of signals, such
as speech signals [5] and seismic signals [6]. The AR model
is able to represent a broad spectral range, yielding robust
characterization of a variety of potential disturbances; whereas
the sinusoidal model (i.e., modeling the disturbance signal as
a sum of sinusoids) in [3, 7] only represents a fixed number
of certain frequency components. Specifically, the observed
waveform after t0 at the sensors is expressed in the following
AR formula:

y(ℓ)n =

p∑

j=1

ajy
(ℓ)
n−j + u(ℓ)

n , n > t0, ℓ = 1, 2, . . . , L, (2)

where u
(ℓ)
n ∼ N (0,σ2

u) is the driving noise of the AR
process, accounting for the excitation of the disturbance and
the measurement noise.

Denoting the parameter vector comprised of the AR co-
efficients and the variance as θ, then the disturbance-induced
waveform change in (1) and (2) corresponds to the change
of the parameter vector at n = t0 from θ = θ0 �
[0, 0, . . . , 0,σν ]

� to θ = θ1 � [a1, a2, . . . , ap,σu]
�. Defining

yk
j
(ℓ) � [y

(ℓ)
k , y

(ℓ)
k−1, . . . , y

(ℓ)
j ]�, the log-likelihood ratio of

samples from time j to k is expressed as [8, Ch.8]

Sk
j =

L∑

ℓ=1

k∑

i=j

s
(ℓ)
i , s

(ℓ)
i � 1

2
log

σ2
ν

σ2
u

−
ε
(ℓ)
i,θ1

2

2σ2
u

+
ε
(ℓ)
i,θ0

2

2σ2
ν

, (3)

with ε
(ℓ)
n,θ0

� y
(ℓ)
n and ε

(ℓ)
n,θ1

� y
(ℓ)
n −∑p

j=1 ajy
(ℓ)
n−j . However,

this log-likelihood ratio (3) cannot be directly applied to the
sequential change detection since the post-change parameter
θ1 cannot be specified due to the diverse nature of the dis-
turbance. To overcome this problem, we apply the generalized
local log-likelihood ratio (GLLR) test.

The GLLR test is derived by combining the local as-
sumption and the generalized likelihood ratio approach. The
former assumes that the parameter change is small, i.e.,
θ1 ≈ θ0. The corresponding test under this assumption is
called the locally optimal test, meaning that the detector is
asymptotically optimal as r � θ1 − θ0 → 0. Since that we
have no prior knowledge of the disturbance, assuming that the
change is small corresponds to the worst-case scenario that
is most difficult to detect. On the other hand, the significant
changes induced by the disturbance can be easily detected by
any simple detection schemes. To that end, using the local
assumption, we approximate the log-likelihood ratio by a linear
expansion (up to the second order) around θ0:

Sk
j ≈ r�




L∑

ℓ=1

k∑

i=j

z
(ℓ)
i


− 1

2
r�




L∑

ℓ=1

k∑

i=j

w
(ℓ)
i


 r, (4)

with z
(ℓ)
i and w

(ℓ)
i given by (5) at the top of next page. Here

r is a small vector (i.e., r�r is small).

Then the generalized likelihood ratio approach decides the
change direction r in (4) by substituting r with its maximum-
likelihood estimate, i.e., S̃k

j = supr S
k
j . Recalling that θ1 ≈

θ0, we have

L∑

ℓ=1

k∑

i=j

w
(ℓ)
i

L(k − j + 1)
→ J � Eθ0(w

(ℓ)
i ) =

[
I 0
0 2

σ2
ν

]
, (6)

as L(k−j+1) → ∞, corresponding to the case of either large
number of samples, and/or large number of sensors. Here I is
the p × p identity matrix. We constrain r to be on a small
ellipse r�Jr = b2, where b is a small radius parameter, and
evaluate the generalized local likelihood ratio as

S̃k
j = sup

r�Jr=b2
r�




L∑

ℓ=1

k∑

i=j

z
(ℓ)
i


− L(k − j + 1)

2
r�Jr

= bUk
j − L(k − j + 1)

2
b2, (7)

with z̃
(ℓ)
i �

(
J1/2

)−1
z
(ℓ)
i and

Uk
j �






L∑

ℓ=1

k∑

i=j

z̃
(ℓ)
i




� 


L∑

ℓ=1

k∑

i=j

z̃
(ℓ)
i


 . (8)

With (7) available, then the occurrence of the disturbance can
be detected using the following sequential change detection
algorithm:

Nk = Nk−1�{g̃k−1>0} + 1, (9)

g̃k =
(
S̃k
k−Nk+1

)+

, T̃ = inf{k : g̃k ≥ h}. (10)

which is an equivalent form of the well-known Page’s CUSUM
procedure, but based on the GLLR statistic. Note that x+ �
max{x, 0}. Due to the space limitation, we refer to [8, Ch.2]
for detailed description of this procedure. Here Nk is the
number of observations at time k since the last time of resetting
the test statistic g̃k to zero at time k − Nk and �{·} is the
indicator function. Note that at each time k, gk is computed
and compared with the threshold h, which is choosen to meet
the false alarm constraint. T̃ is the first time that g̃k exceeds
h and when the disturbance is declared to occur.

III. DECENTRALIZED SCHEME USING LEVEL-TRIGGERED
SAMPLING

The detection scheme discussed in the previous section is
essentially a centralized one, because the signals observed at
different sensors are assumed available to the fusion center.
However, in practice, the sensors are equipped with limited
power storage, and bandwidth-limited communication capabil-
ity. Therefore, in designing a practical system, we need to con-
sider the rate constraint (i.e., the sensors should communicate
with the fusion center at a lower rate than their local sampling
rate) and the quantization constraint (i.e., each sensor should
transmit a small number of bits every time it communicates
with the fusion center). Thus the decentralized detection, where
the sensors communicate with the fusion center in some low-
rate fashion, becomes necessary. In this section, we propose
a decentralized scheme based on the level-triggered sampling,
which efficiently lowers the communication overhead in terms
of both the communication frequency and the number of
information bits at each transmission.
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2
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 (5)

In the decentralized setup, the goal is first to select an effi-
cient communication scheme, then the fusion center performs
the detection based on information sent by sensors. Before
proceeding, we first introduce an asymptotic transformation to
the centralized statistic in (7) as follows:

S̃k
j →

L∑

ℓ=1

S̃
k,(ℓ)
k−Nk+1 �

L∑

ℓ=1

(
bV k

j

(ℓ) − k − j + 1

2
b2
)
, (11)

where V k
j

(ℓ) �
√(∑k

i=j z̃
(ℓ)
i

)� (∑k
i=j z̃

(ℓ)
i

)
, as k− j+1 →

∞. In essence, the statistic in (11) can be interpreted as that
each sensor estimates the change direction r locally. The above
asymptotic result enables the sensors to compute the local
statistic S̃

k,(ℓ)
k−Nk+1 individually based on their own observa-

tions, instead of quantizing and transmitting the observations
at every local sampling instant to the fusion center. Such
an approximation as (11) is beneficial for decentralizing the
GLLR test, which as we will see later, on one hand, lowers
the communication overhead between sensors and the fusion
center; on the other hand, it also decreases the computation
burden at the fusion center, which now only needs to sum
up the received statistics from sensors to recover the global
statistic. In what follows, we build on (11) to develop an
efficient decentralized implementation based on the level-
triggered communication scheme at the sensors and its asso-
ciated decision rule at the fusion center.

The level-triggered sampling strategy is essentially a
single-bit quantization of the local statistic, where the trans-
mission of the local statistic is only triggered once it hits
a certain value, thus is observation-adaptive. Moreover, all
sensors communicate with the fusion center asynchronously,
which avoids the use of a global clock for synchronization. We
begin by simplifying the notation of the local test statistic at
the ℓth sensor {S̃k,(ℓ)

k−Nk+1} as {S̃(ℓ)
k }, because Nk is uniquely

determined by k, and denoting the nth communicating time
of the ℓth sensor as kℓn. Note that at the ℓth sensor, we can
decompose the test statistic as S̃

(ℓ)
k = S̃

(ℓ)
k − S̃

(ℓ)

kℓ
n−1

+ S̃
(ℓ)

kℓ
n−1

−
. . .− S̃

(ℓ)

kℓ
1
+S̃

(ℓ)

kℓ
1
− S̃

(ℓ)
0 , where S̃

(ℓ)
0 = 0, and the transmission

instants kℓn is recursively defined as

kℓn � inf
{
k > kℓn−1 : S̃

(ℓ)
k − S̃

(ℓ)
kn−1

/∈ (−∆,∆)
}
, (12)

with kℓ0 = 0, S̃
(ℓ)
0 = 0, ∆ and ∆ are positive constants, selected

to control the frequency of transmission. Note that since it
is assumed that the observations at different sensors follow
the same distribution, ∆ and ∆ take the same values across
the sensors, and they are also known to the fusion center.
According to (12), each sensor informs the fusion center of
its local statistic every time it cumulates to exit the interval
[−∆,∆]. Assuming that S̃(ℓ)

kℓ
n
−S̃

(ℓ)

kℓ
n−1

hits the boundary exactly

in (12), we have S̃
(ℓ)

kℓ
n
− S̃

(ℓ)

kℓ
n−1

= −∆ or ∆. Then the local
statistic can be delivered by sending only one-bit information

of which boundary is hit to the fusion center. In particular, the
nth one-bit message transmitted by the ℓth sensor is given by

x(ℓ)
n =





1, if S̃
(ℓ)

kℓ
n
− S̃

(ℓ)

kℓ
n−1

≥ ∆,

−1, if S̃
(ℓ)

kℓ
n
− S̃

(ℓ)

kℓ
n−1

≤ −∆.
(13)

In essence, the above communication scheme implies that the
fusion center adaptively samples the local statistic at all sensors
to lower the transmission frequency. Moreover, the quantiza-
tion of local statistic is no longer needed, which substantially
decreases the amount of data at each transmission. The level-
triggered sampling scheme at each sensor is summarized as
Algorithm 1. Note that the reset signal in the procedure
corresponds to the indicator function in the GLLR test (9):
recalling that Nk is the number of observations for computing
the local statistic, when the global statistic at the fusion center
S̃k ≤ 0, a reset signal is broadcast to all sensors informing
them to reset Nk = 1; otherwise, with no reset signal, Nk

keeps increasing. The above transmission scheme features

Algorithm 1 : Level-triggered sampling of the GLLR
statistic at the ℓth sensor

1: Initialization: k ← 0
2: Reset: λ ← 0, N ← 1
3: while S̃

k,(ℓ)
k−N+1 − λ ∈ (−∆,∆) do

4: k ← k + 1
5: Check the reset signal broadcasted by the fusion center:
6: if present then
7: go to line 2
8: else
9: N ← N + 1

10: end if
11: Compute S̃

k,(ℓ)
k−N+1 by (11)

12: end while
13: Send x

(ℓ)
k = sign(S̃k,(ℓ)

k−N+1 − λ) to the fusion center
14: λ ← S̃

k,(ℓ)
k−N+1

15: Check the reset signal broadcast by the fusion center:
16: if present then go to line 2
17: else go to line 3.

an inherent data compression and adaptive communication
between the sensors and the fusion center. Moreover, the one-
bit transmission induces significant savings in bandwidth and
transmission power.

On the other side, the fusion center receives the information
bits from each sensor asynchronously and updates the global
running statistic as follows:

S̃k= S̃k−1 +

L∑

ℓ=1

(
�{k=kℓ

n, x
(ℓ)
n =1}∆− �{k=kℓ

n, x
(ℓ)
n =−1}∆

)
.

(14)

Every time the global statistic is updated at the fusion center,
it is used to perform the GLLR test given by (9)-(10). There
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Fig. 1. Detection of the typical voltage disturbance using the proposed
centralized and decentralized GLLR detectors.

are two decisions to make, i.e., triggering the alarm that a dis-
turbance is detected or continuing to receive more information
bits from the sensors.

In summary, through the level-triggered sampling scheme,
we efficiently recover the decision statistic at the fusion center
by collecting local statistics from sensors. Specifically, com-
pared to the centralized setup where observations are transmit-
ted at every sampling instant with multiple quantization bits,
the level-triggered sampling features lower communication
frequency (which can be controlled by the parameters ∆ and
∆) and one-bit representation of each sample.

IV. SIMULATION RESULTS

In this section, we numerically examine the performance
of both the centralized and level-triggered sampling based
decentralized GLLR tests. Throughout this section, the GLLR
detector is implemented based on second-order AR model. We
first apply the proposed tests on a typical voltage disturbance
induced by capacitor switching. The voltage disturbance data
here is obtained by the Alternative Transients Program (ATP-
EMTP) software [9]. The nominal voltage is a sinusoidal
waveform with f0 = 60Hz and unit magnitude. Three sensors
are deployed in the detection system, each of which samples
the voltage waveform at a rate of 20KHz. In Fig. 1, we
plot both the signals before and after the occurrence of the
disturbance (on the left), and the decision statistic g̃k at the
fusion center as a function of time (on the right). The starting
point of the disturbance is marked by a dashed line. We see
that the decision statistics at the fusion center exhibit abrupt
changes on the occurrence of the disturbance. Note that both
the centralized decision statistic and the decentralized one are
shown (the interval [−∆,∆] is designed such that Eθ0(τ) = 10
samples, where τ denotes the communication interval) and
they match closely with each other.

Next, to perform a rigorous comparison with the con-
ventional RMS method and also to compare the proposed
centralized and decentralized solutions, the mean detection
delay versus the false alarm probability is examined. Since the
ATP-EMTP simulated disturbance data is based on transient
model and is highly non-stationary, thus it is unsuitable for
performance evaluation from the signal processing point of
view. To that end, we use Matlab simulated data to simplify
the disturbance as a non-transient sinusoidal waveform with
fixed frequency of 500Hz added to the nominal waveform,
which is also employed as “synthetic data” in [1]. We first
consider the single-sensor case and compare the performance
of the proposed GLLR test and that of the RMS method.
Here the RMS is implemented with a half-cycle window
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Fig. 2. The detection delay versus the false alarm probability for various
detectors.

that slides point by point, achieving the best possible time
resolution. It is seen from Fig. 2 that the proposed GLLR
test significantly outperforms the RMS method as the false
alarm probability becomes smaller. Then we consider the case
where there are three sensors, and the performances of the
centralized GLLR detector and the decentralized detector are
also shown in Fig. 2. Compared with the single-sensor case, it
is seen that employing multiple sensors substantially improves
the performance in terms of achieving a much shorter detection
delay. The local thresholds for the level-triggered sampling is
chosen as [−∆,∆] = [−5.4, 5.4], under which at each sensor
we have Eθ0(τ) = 15 samples and Eθ1(τ) = 2.5 samples. It
is seen that the proposed decentralized detector only exhibits a
small increase of detection delay compared to the centralized
detector, while significantly saving the communication over-
head between the sensors and the fusion center by sending
one-bit sequence at every level-triggered sampling instant.
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