
Adaptive Block Sampling for Spectrum Sensing

Ali Tajer
ECE Department

Wayne State University

H. Vincent Poor
EE Department

Princeton University

Abstract—This paper considers spectrum access in wideband
channels and its objective is to design an agile and reliable
mechanism for identifying spectrum opportunities. Driven by the
need for reducing the time required for identifying spectrum
opportunities, the idea of data-adaptive and sequential block
sampling is proposed, through which instead of examining each
channel individually, a cognitive user takes samples that are
linear combinations of simultaneous measurements from multiple
channels. If such coarse samples indicate that the block of
channels contains at least a vacant (unused) channel, then the
channels are examined individually in order to accumulate more
information about their spectral occupancy states, and otherwise,
the entire block is discarded and the process resumes sequentially
by examining the next block of channels.

I. BACKGROUND

Current statistics about radio-frequency spectrum occu-
pancy patterns indicate that a considerable fraction of the
frequency spectrum is under-utilized. As wireless networks
are constantly growing in scale and data traffic, in future
networks it is anticipated that the occupancy states of the
under-utilized segments of the spectrum will vary rapidly and
the spectrum holes might not remain unoccupied for long
durations. Therefore, it is of paramount importance to identify
the spectrum holes quickly and consequently the notion of agile
spectrum sensing has received extensive research attention.

A notable direction is the quickest sequential search ap-
proach of [1], in which a wideband spectrum is split into
smaller narrowband channels and the cognitive users scan
them sequentially one-at-a-time. Upon scanning and accu-
mulating enough information about each channel a cognitive
user decides whether the channel is vacant (unused) or is
occupied. If the channel is determined to be a hole, the
search is terminated and otherwise the process is carried on
until a hole is detected. This approach is very effective when
the vacant channels are not rare. In case of rarity of vacant
channels the quick search approaches of [2], [3] and distilled
sensing [4] can further reduce the time required for identifying
the spectrum opportunities. In these approaches adaptive and
sequential experimental designs are proposed in order to gather
information from the entire spectrum and with the purpose
of effectively focusing the sampling resources on the more
promising segments of the spectrum.

The existing sequential and data-adaptive methods, irre-
spective of their discrepancies, all conform in the fact that they
sequentially take one sample from each sequence, update their
decisions, and decide about their next actions. In contrast, this
paper proposes to perform block sampling in which a cognitive
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users first takes coarse samples, which are linear combinations
of simultaneous measurements of a block of channels, and
when the block is deemed to contain spectrum opportunities,
then fine samples are taken to further refine the information
about the spectral occupancy states of the channels within the
block.

We remark that there exists a different direction in wide-
band spectrum sensing in which it is assumed that the wide-
band channel is heavily under-utilized and used only sparsely.
In this approach the cognitive radios exploit the sparsity
structure of the wideband channel and use a mixed analog-
digital sampling strategy that requires sub-Nyquist sampling
in order to perfectly recover the spectral occupancy status of
the channel [5] [6]. In another relevant direction, the cognitive
radios deploy a compressed sensing-based machinery (which
is not data-adaptive) for estimating the power spectral density
(PSD) of the wideband channel [7]–[12]. These approaches are
further extended in [13] to also track temporal variations of
the spectral occupancy during sensing. Exploiting the sparsity
empowers the cognitive radios to sample the signal activity
over the channel at a sub-Nyquist rate, which expedites the
process of estimating the PSD. Finally, the third direction
pertains to collaborative sensing in cognitive networks, where
a group of cognitive radios are clustered to collaboratively
perform spectrum sensing [14].

II. PRELIMINARIES

A. Sensing Model

Consider a wideband spectrum shared by license-
holding (primary) users and cognitive (secondary) users with
interference-avoiding spectrum access. The cognitive users are
allowed to opportunistically seek the portions of the spectrum
under-utilized by the active users (either primary users or
secondary ones currently using the spectrum) and access them.
We assume that the wideband channel is comprised of n non-
overlapping narrowband channels indexed by {1, . . . , n} that
have independent spectral occupancy states.

We assume that the occupancy status of the spectrum
remains unchanged during the spectrum sensing process and
consider a dichotomous statistical model for the occupancy
of the channels. Let the Bernoulli random variable Si, for
i ∈ {1, . . . , n}, indicate the occupancy state of the ith channel,
where Si = 1 means that the ith channel is occupied and
Si = 0 means that the ith channel is vacant. By assuming that
each channel is vacant with probability ε we have

Si
i.i.d.∼ Bernouli (1− ε) . (1)
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In order to distinguish between the vacant and occupied
channels we define the sets of vacant and busy channels as

H0
4
=

{
i ∈ {1, . . . , n} : Si = 0

}
, (2)

and H1
4
=

{
i ∈ {1, . . . , n} : Si = 1

}
. (3)

A cognitive user continuously monitors the channels and takes
observations for identifying a vacant channel. Specifically,
we denote the set of observations made from channel i by
Xi

4
= {X1

i , X
2
i , . . . }, which are related to the occupancy states

of the channels according to

Xj
i = gi(Si) + N j

i , j = 1, 2, . . . , (4)

where gi captures the dynamics of sensing (e.g., the fading
channel between the user active on channel Si and the cog-
nitive user) and N j

i accounts for the observation noise. We
assume that the measurements are statistically independent
over time and channels. More specifically, conditionally on Si,
the elements of elements of Xi are independent and identically
distributed (i.i.d.) obeying

Xj
i | Si ∼ Fi , j = 1, 2, . . . (5)

where F0 and F1 denote the cumulative distribution functions
(cdfs) of two distinct distributions on R. The distributions
F0 and F1 capture the underlying statistical models of the
observations taken from the vacant and occupied channels,
respectively. For convenience, we assume that F0 and F1 have
probability density functions (pdfs) f0 and f1, respectively.

B. Coarse vs. Fine Sampling

1) Background: Sequential block sampling is closely re-
lated to the sequential detection literature, which aims to
optimize a balance between decision reliability and the aver-
age number of samples taken. The majority of the existing
approaches aim to identify all of the sequences X i that
are distributed according to F0. When the objective is to
identify all vacant channels, minimizing the average number
of observations made with constraints on decision quality can
be decomposed into minimizing the average number of obser-
vations necessary for deciding about the spectral state of each
individual channel with the same reliability constraints [15].
The optimal test for each channel, which is the test that
requires the smallest number of observations and satisfies the
reliability constraints, is the sequential probability ratio test
(SPRT) [16].

The SPRT approach for the spectrum sensing problem at
hand is too conservative in the sense that it tends to make a
reliable decision about the states of all channels. In contrast,
it is possible to skip the channels that can be deemed as weak
candidates after some rough observations in favor of saving
the sensing resources, and consequently, reduce the average
time required for identifying the vacant channels. Based on this
premise, the quickest detection method proposed and analyzed
in [1] aims to find one sequence generated according to F0

(i.e., a vacant channel) and formalizes a detection rule that
minimizes the average delay in reaching a decision given that a
satisfactory guarantee for the decision is ensured. The optimal
test in this setting turns out to be the classical cumulative sum
(CUSUM) test.

2) Proposed Sampling Model: As noted above, the existing
methods, irrespective of their discrepancies, all conform in
the fact that they sequentially take one sample from each
sequence, update their decisions, and decide about the next
action. In contrast, we propose a data-adaptive sampling model
which is a combination of the following two types of sampling
strategies:

1) Coarse sampling: Instead of taking one sample from
each channel at each time, we divide the channels
into blocks of size ` and take one sample that is
a linear combination of ` measurements where one
measurement is taken from each channel. Such block
sampling has, broadly, a two-fold effect. On one hand
it takes only one sample for accumulating information
about ` channels and is substantially smaller than the
resources needed by the existing approaches which
devote at least one sample to each channel. On the
other hand, one combined and aggregated sample
is potentially far less informative about the spectral
activities of the individual channels in comparison
to having ` different samples. In order to benefit
from the advantage (reduction in sampling rate) and
avoid its undesired effects (inaccurate information)
these combined samples are used only to obtain
some rough confidence about whether the block of
channels includes a vacant channel. When a block is
deemed to include only busy channels the entire block
of channels is discarded and a combined sample is
taken from the next block. If the block is deemed to
include a vacant channel, then the block is retained
for further scrutiny through more refined observations
as explained next. The motivation behind such block
sampling is that while such rough observations are
insufficient for identifying a vacant channel, they
might be sufficient for discarding the channels that
are very likely to be occupied.

2) Fine sampling: Once a block of channels is deemed
to contain a vacant channel and is retained for more
accurate scrutiny, we perform an SPRT on each of
the channels sequentially until a vacant channel is
identified. If the block is found not to contain a
vacant channel after performing SPRTs on all the
channels, the entire block is discarded permanently,
and the sampling procedure resumes by taking coarse
samples from the next block.

III. ADAPTIVE BLOCK SAMPLING

A. Sampling Strategy

We define r 4
= n/` as the number of channel blocks1 and

without loss of generality we define

Gi
4
= {(i− 1)`+ 1, . . . , i`} , (6)

as the set of channels grouped in the i-th block for i ∈
{1, . . . , r}. With the ultimate objective of identifying T spec-
trum holes the proposed sampling procedure is initiated by tak-
ing coarse measurements from all channel groups G1, . . . ,Gr.

1For convenience of notation we assume here that n is an integer multiplier
of `; however, all the analysis can be easily extended to address any arbitrary
n.
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Based on these coarse observations a fraction of the groups
that are least-likely to contain a vacant channel are discarded
and the rest are retained for more accurate scrutiny. Repeating
this procedure successively refines the search support and
progressively focuses the observations on the more promising
channel groups. More specifically, at each time the sampling
procedure selects a subset of channel groups {G1, . . . ,Gr} and
takes one coarse sample from each of these groups. Upon
collecting these measurements, it takes one of the following
actions:

A1: (Observation): There is insufficient information to
decide which groups are most likely to contain spec-
trum holes; continue to take one more coarse sample
from the same groups.

A2: (Refinement): There is sufficient confidence that
some of the groups are very unlikely to contain a
vacant channels; discard a portion of the groups with
the highest likelihoods of containing of only busy
channels. By denoting the number of groups retained
prior to a refinement action by r, the number of
groups that this action discards is (1−α)(r−T ) for
some α ∈ (0, 1). Discarding the groups at this rate
ensures that at least T groups will be retained for
the final detection action (action A3). When a group
of channels are discarded they will be deemed weak
candidates for being vacant channels and will not be
observed anymore, while the remaining channels are
retained for more scrutiny.

A3: (Coarse sampling termination): There is sufficient
confidence that the blocks retained contain vacant
channels; stop coarse sampling and start taking fine
samples according the steps B1-B3 delineated next.

After terminating coarse sampling, all the groups of channel
retained are sorted in the descending order of the likelihoods
that they contain vacant channels and then we start taking fine
samples by first taking a fine sample from the first channel in
the first group. Upon collecting a fine sample, the sampling
procedure takes one of the following decisions:

B1: There is insufficient information to decide whether
the channel is vacant; continue to take one more fine
sample from the same channel.

B2: There is sufficient confidence that the channel is
not vacant and there are more channels to examine;
discard the channel and take one fine sample from
the next channel.

B3: There is sufficient confidence that the channel is va-
cant; stop the sampling process if T vacant channels
are identified and, otherwise, continue by taking one
fine sample from the next channel.

B. Formulation

In order to formalize actions A1-A3 and B1-B3 we define
two switching functions ψc and ψf as follows. By denoting
indices of the channel groups measured via coarse measure-
ments (actions A1-A3) at time t ∈ N by Lt and defining L̄ as
the set of all such possible sets we define ψc : N→ L̄, which
maps the time index t to the indices of the channel groups
being coarse-measured at time t. Moreover, By denoting the
set of indices of the channels measured via fine measurements

(B1-B3) at time t ∈ N by Kt and defining K̄ as the set of all
such possible sets we define ψf : N→ K̄, which maps the time
indes t to the indices of the channels being fine-measured at
time t. Hence, when Gi ∈ ψc(t) we take a coarse measurement
at time t from group Gi, where by denoting the sample taken
from Gi at time t by Y it we have

Ȳ it =
∑̀
l=1

Xl , (7)

where Xl is a fresh sample from the l-th element of Gi. On
the other hand, when i ∈ ψf (t) we take a fine sample from
channel i at time t denoted by

Y it = X , (8)

where X is a fresh sample from channel i. Furthermore we
define two stopping time values τc and τf as the stopping
time of the coarse and fine sampling procedures, respectively.
Specifically, τc is the instant when coarse sampling is termi-
nated (action A3) and the sampling strategy proceeds with
taking fine samples, and τf is the time at which the sampling
procedure stops taking any further samples and declares the
set U as the set of indices of T channels as vacant channels.

Characterizing the optimal sampling strategy and decision
rules relies on optimizing an interplay between two perfor-
mance measures, one being the number of samples taken and
the other being the frequency of erroneous decisions. For
given stopping time values τc and τf and a given sequence
of mapping functions ψ̄c(τc)

4
= {ψc(1), ψc(2), . . . , ψc(τc)}

and ψ̄f (τc)
4
= {ψf (1), ψf (2), . . . , ψf (τf )}, the probability of

erroneous detection, that is the probability that the detected
channel is an occupied channel, is

P(τc, ψ̄c(τc), τf , ψ̄f (τf ))
4
= P

(
|U ∩H1| 6= 0

)
. (9)

Our objective is to minimize the frequency of erroneous
decisions subject to a hard constraint on the number of samples
taken over all possible stopping times and switching rules.
Hence, the optimal sampling strategy is the solution to the
following optimization problem:{

min P(τc, ψ̄c(τc), τf , ψ̄f (τf ))

s.t.
∑τc
t=1 |Lt|+

∑τc+τf
t=τc+1 |Kt| ≤ S

(10)

where S controls the aggregate number of coarse and fine
measurements.

C. Decision Rules

In order to proceed with analyzing the decision rules, we
need to find the statistical distributions of the samples Y it .
According to the definitions of Y it in (8), it obeys one of the
two following hypotheses:

HA,0 : Y it ∼ F0

HA,1 : Y it ∼ F1
. (11)

On the other hand, when Ȳ it is a coarse sample as defined
in (7) it has a mixed distribution, which is characterized by
the the number of busy and vacant constituent channels of
the corresponding channel block. We define Q0 and Q1 as the
cdfs of Ȳ it when the corresponding block includes at least one
vacant channel and no vacant channels, respectively. Hence,
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when Ȳ it is a coarse sample it obeys one of the following two
hypotheses:

HB,0 : Ȳ it ∼ Q0

HB,1 : Ȳ it ∼ Q1
, (12)

and we denote the pdfs of Q0 and Q1 by q0 and q1. Based
on these definitions and defining the sequences of likelihood
ratio values {ΛA

t (i)} and {ΛB
t (i)}, which are initialized as

ΛA
0 (i) = ΛB

0 (i) = 1 and track the likelihood ratios pertinent
the hypothesis testing problems in (11) and (12), respectively,
the actions {Ai,Bi} at time t + 1 for t ∈ N ∪ {0} can be
formalized as follows.

A1 : The mapping function is updated as ψc(t + 1) =
ψc(t) and for i ∈ ψc(t + 1) the likelihood ratio is
updated as

ΛA
t+1(i) = ΛA

t (i) ·
q0(Y it+1)

q1(Y it+1)
. (13)

A2 : The mapping function is updated as ψc(t + 1) ⊂
ψc(t) and for i ∈ ψc(t + 1) the likelihood ratio is
updated as

ΛA
t+1(i) = ΛA

t (i) ·
q0(Y it+1)

q1(Y it+1)
. (14)

A3 : The stopping time is set as τc = t and all the channels
in blocks included in ψc(t) are retained for further
processing under actions B1 − B3.

The values of the sequence of likelihood ratios {ΛA
t (i)} are

used to dynamically decide what action should be taken at each
time. The detailed discussion and the pertinent performance
analysis are available in [3].

B1 : The mapping function is updated as ψf (t + 1) =
ψf (t) and for i ∈ ψ(t) the likelihood ratio is updated
as

ΛB
t+1(i) = ΛB

t (i) ·
f0(Ȳ it+1)

f1(Ȳ it+1)
. (15)

B2 : The mapping function is updated as ψf (t+1)= index
of the next channel and the likelihood ratio is updated
as

ΛB
t+1(i) =

f0(Ȳ it+1)

f1(Ȳ it+1)
. (16)

B3 : Channel i is a vacant channel. If T channels are iden-
tified stop further sampling and τf = t. Otherwise,
set ψf (t + 1)= index of the next channel and the
likelihood ratio is updated by resetting ΛB

t (i) = 1

ΛB
t+1(i) =

f0(Ȳ it+1)

f1(Ȳ it+1)
. (17)

The relationship between the decision rules for iden-
tifying the unused channels and the sequence of
likelihood ratio tests follow the standard SPRT.

IV. CONCLUSION

In this paper we have proposed a technique for agile
identification of the spectrum holes. The core structure of the

sensing strategy is a novel sampling strategy that adaptively
and sequentially decides to take either coarse samples, which
encompass measurements from multiple channels in one sam-
ple, or fine samples, which encompass measurements from
only one channel. The data samples collected are processed
by sequential probability ratio tests in order to form decisions
about the spectral states of the channel blocks and individual
channels. This approach is effective in focusing the sampling
resources on the promising segments of the spectrum, which
are the segments that are more likely to include spectrum holes.
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