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Abstract—In this paper we propose a belief flow model for
social networks and evaluate its application on estimation of
public converged beliefs. The model reveals that the control
of beliefs in a social network heavily depends on its degree
centralities and clustering coefficients. The application of this
model to social network belief flow simulation leads to a capacity
to control and predict the converged beliefs in a social network.
Two different network models, preferential attachment model and
generalized Markov Graph model, are applied to the belief flow
model. Experiments with published real social network data are
provided and demonstrate very good performance of the belief
flow model as well as a comparison between different network
models.

Index Terms—Social Networks, Information Flow, Machine
Learning

I. INTRODUCTION TO THE MODEL

The beliefs in a social network may have value for members
of the network or even outsiders [4] [7]. For example, in a
clinical study, a doctor may be interested in researching ways
to influence patients’ behaviour by “facilitating” interactions
among patients. Consequently, prediction [1] [6] [3] or even
control of the beliefs in a social network can be an important
and interesting problem. As such, it requires a mathematical
model to simulate, analyse the flow of beliefs, as well as
optimize the control strategy, in a social network.

A. Basic Concepts and Definitions

A linear belief flow model includes a network, people’s
private beliefs in the network, updated beliefs at each time
step, and a control strategy to shape beliefs. The model takes
network, private beliefs and control strategy as inputs and final
converged beliefs as outputs. The definitions of these concepts
are introduced in the following paragraphs.

1) Network: The structure of a network plays a very
important role as it influences the result of the final con-
verged beliefs as well as the strategy of belief control. For
a network G with N nodes, we use indices i ∈ {1, 2, ..., N}
to represent the nodes, and the set of nodes is defined as:
nodeG = {1, 2, ..., N}. The set of edges, edgeG, includes
all pairs of connected nodes, {i, j} ∈ edgeG, in the network
and the network is thus defined as: G = {nodeG, edgeG}.
The information of the network can also be represented by
its adjacency matrix: {A}, whose elements are Aij . And in
this paper, we only focus on undirected binary networks.

In practice, the information of the network may not be com-
plete, which means {A} is not always available. Furthermore,
the network may contain a large number of nodes or edges,
which requires an expensive computational power to process.
To solve such problems, network models are necessary. A good
network model can help calculate the converged beliefs using
less information than {A}, and more efficiently. Two important
network models, the preferential attachment model [2] and the
generalized Markov Graph model [9], will be introduced and
applied in the analysis of belief flow .

2) Belief: We invoke two kinds of beliefs in this model:
private belief and updated belief. The former is unchanged and
taken as an input of the model. The latter, however, updates
at each time step and will be converging to a limit.

a) Private beliefs: Private beliefs abstract the intrinsic
characteristics of nodes in a network. They will not be changed
during the process of information flow. In this model, node i
in the network takes the private belief as a random number
wi ∈ [−1, 1] with distribution p(wi). The distribution p(wi)
is common knowledge to everyone in the network.

b) Current beliefs: A current Belief Bi,T describes the
current opinion of node i in a network at time step T . It lies in
the range [−1, 1]. For an arbitrary node i in the network, Bi,T
can be observed by its neighbour and is initialized as a private
belief wi, i.e., Bi,0 = wi. The value of Bi,T is determined as
the average of the current beliefs of the neighbours of node i
and the private belief of node i, wi. Bi,T will be updated at
each time step and will converge to a limit Bi,∞ in certain
networks, as will be explained in Section II

3) Control Power: Control power is used to show how
much the beliefs in a network are altered from their initial
status. Control power over an arbitrary node i is defined as the
difference between the converged belief Bi,∞ and the initial
belief wi: cpi = Bi,∞ − wi. And the averaged cpi all over the
network is thus the network control power: cp = ΣNi=1cpi/N .

4) Control Strategy: To control the overall behaviour of the
network, we propose a control strategy which chooses certain
people in the network, so called control nodes, and asks them
to broadcast chosen beliefs to their neighbours. The set of
control nodes is defined as C, with a cardinality c. The c
control nodes are set, without loss of generality, as the first
c nodes in the node set nodeG. And the belief chosen to be
broadcast by the ith control nodes is the controlled belief Ci,
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where Ci ∈ [−1, 1]. The choice of the control nodes depends
on the structure of the network to reach the maximum control
power.

B. Belief Flow Model

1) Current Belief Updated without Control Strategy: If the
control strategy is not applied, at an arbitrary time step T ,
where T ∈ Z, the current belief Bi,T of node i is updated
according to the average of the current beliefs of its neighbours
at the previous time step, {Bj,T−1|{i, j} ∈ edgeG}, and its
private belief wi, as shown in Eq.(1):

Bi,T =
Σj,{i,j}∈edgeGBj,T−1 + wi

di + 1
, (1)

where di is the degree of node i , and Bi,0 is initialized to 0.
2) Current Belief Updated with Control Strategy: To better

show how the converged beliefs across the network G are
influenced by the control strategy, we define the following
concepts. The current belief vector is defined as B(T ), whose
elements are Bi,T , to represent the beliefs of the nodes. The
time step T ∈ N, and Bi,0 is set to wi. The adjusted private
belief vector is defined as: w∗ whose elements are wi/(di +
1). And the adjusted adjacency matrix A∗ contains elements
A∗i,j = Ai,j/(1 + dj). The control matrix is defined as M ,
where Mi,i = 1 if i /∈ C and Mi,j = 0 otherwise. The control
vector is V , where Vi = Ci if i ∈ C and Vi = 0 otherwise. The
updating process of the current belief vector B(T ) is shown
in Fig.(1),

Fig. 1: Update of current belief.

The adjusted initial belief w∗ and adjusted adjacency matrix
A∗ are for the calculation of averaged belief for each node.
The control matrix M and control vector V are used to set
the belief of control nodes as their corresponding controlled
belief Ci. And Z−1 means the belief are updated based on
the information of last time step. Eq.(2) shows the formula to
calculate B(T ):

B(T ) = [w∗ ×M + V ]× [ΣT−1t=0 (A∗ ×M)t]. (2)

And if the summation ΣTt=0(A∗ ×M) in Eq.(2) converges
to a finite matrix when T approaches ∞, the converged belief
B(∞) can be represented as in Eq.(3):

B(∞) = [w∗ ×M + V ]× [I −A∗ ×M ]−1. (3)

II. CONVERGED BELIEFS ESTIMATION

According to Eq.(3), to calculate the exact solution of
converged belief vector B(∞), the complete information of A
is needed. In addition, the computational cost is the inversion
of matrix I − A∗ × M . Such an exact solution doesn’t
particularly shed any light on the choice of control set C or
the convergence speed of B(T ) towards B(∞). In order to
reduce the information needed to predict the converged belief
vector B(∞), as well as provide detailed analysis about the
control strategy and convergence speed, social network models
are needed.

Two network models, preferential attachment model [2] and
generalized Markov graph model [9], will be applied. The
reason to choose these two models is that they both provide
probabilistic properties about the element Ai,j of adjacency
matrix A. The preferential attachment model assumes that Ai,j
only depend on the degree of nodes i and j. The generalized
Markov graph model, on the other hand, extends the depen-
dence of Ai,j to both degree and clustering coefficient of nodes
i and j.

A. Preferential Attachment Model

1) Basic assumption: One of the basic assumptions of the
preferential attachment model is that the probability of a node
i attached by a new edge is proportional to its degree di [2]:

∂di
∂t
∼ di. (4)

Based on this assumption, we can derive the probability
Pi,j of an edge established between nodes i and j, as shown
in Theorem II.1 [10]. 1Pi,j will play an important role in the
analysis of control power estimation, and of control strategy
as it represents the information of adjacency matrix A.

Theorem II.1. The probability 1Pi,j of two nodes i and j
connected in network G is:

1Pi,j =
didj

ΣNk=1dk
, (5)

where dk is the degree corresponding to node k.

2) Calculation of Control Power: Theorem II.1 reveals the
statistical properties of adjacency matrix A. If we take A as
a random matrix, combined with Eq.(2) and Eq.(3), we are
able to give the expected value of converged belief for all the
nodes in the network, which is shown in Theorem II.2 [10].

Theorem II.2. In a preferential attachment model, the ex-
pected value of converged belief 1Bi,∞ of a non-controlled
node i, i 6∈ C:

1Bi,∞ =
1

ΣNk=1dk

di
1 + di

Σcj=1Cjdj + ΣNj=c+1
wj

1+dj
dj

1− β1
, (6)

where wj is the private belief of node i, m is the average
number of edges in a network G with N nodes, di is the degree
corresponding to node i, Cj is the controlled belief of control
node j, c is the number of control nodes, and β1 is a constant
which is smaller than 1: β1 = ΣNk=c+1

dk
2

1+dk
�ΣNk=1dk.
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And the expected value of control power 1cpi will be:
1Bi,∞ − wi. According to Eq.(6), we can see that the control
strategy has a direct impact on the converged belief. If
controlled beliefs Ci are fixed, then the maximization of |1cpi|
requires the selection of a control group C to include nodes
with highest degrees in the network G [10].

The information needed for the calculation in Theorem II.2
is the degree list of network G, which is far less than the
information of adjacency matrix A. And the computational
cost of such calculation is O(N), which is much more efficient
than the matrix inverse calculation required by Eq.(3).

B. Generalized Markov Graph Model

1) Basic assumption: In Wang and Krim [9], the gen-
eralized Markov Graph model is introduced as a natural
extension of preferential attachment model. In such a model,
the probabilistic dependence on an edge is extended from the
other attached edges to attached triangles. As degree is used
to describe the dependence on attached edges, the clustering
coefficient [9], which is related to both edges and triangles,
is added to the description of dependence in a generalized
Markov Graph model. The assumption about the probability
of a node i attached by a new edge in a generalized Markov
Graph model then becomes:

∂di
∂t
∼ di(1 + γi)

α, (7)

where di is degree of node i, γi is the clustering coefficient of
node i, and α, which is called clustering weight, is determined
by the property of the network G. To prevent zero clustering
coefficient from making probability of a node getting an edge
vanish, we use (1 + γi) instead of γi.

Based on Theorem II.1, we add the dependence of clustering
coefficient. And to make the summation of 2Pi,j still be the
sum of degrees ΣNk=1dk, the probability 2Pi,j becomes [10] :

2Pi,j =
di(1 + γi)

αdj(1 + γj)
α

η
ΣNk=1dk, (8)

where η is:

η = ΣNi=1ΣNj=1,j 6=idi(1 + γi)
αdj(1 + γj)

α.

2) Calculation of Control Power: Based on Eq.(8), we
developed the converged belief for the generalized Markov
Graph model, as shown in Theorem II.3 [10].

Theorem II.3. Define constant β2 as

β2 =
ΣNk=c+1

(dk(1+γk)
α)2

1+dk

η
ΣNk=1dk. (9)

If |β2| < 1, in a generalized Markov Graph model, the
expected value of converged belief 2Bi,∞ of a non-controlled

nodes i, i 6∈ C is:

2Bi,∞ =
ΣNk=1dk

η

di(1 + γi)
α

1 + di
Σcj=1Cjdj(1 + γj)

α + ΣNj=c+1
wj

1+dj
dj(1 + γj)

α

1− β2
,

(10)

where wj is the private belief of node i in a network G
with N nodes, di is the degree corresponding to node i, γi is
the clustering coefficient of node i, Cj is the controlled belief
of control node j, c is the number of control nodes, α is the
clustering weight for network G, η is defined in Eq.(8).

The expected control power 2cpi will be: 2Bi,∞ − wi.
According to Eq.(9), the clustering coefficient list influences
the control strategy. And if controlled beliefs Ci are fixed, the
maximization of 2cpi requires the selection of control group C
to include nodes with highest d(1 + γ)α value in the network
G [10].

The calculation of converged belief in Theorem II.3 requires
the information of the degree list, clustering coefficient list and
clustering weight α of network G. The clustering weight α is
obtained by a learning process, which will be introduced in
Section III. When calculating the expected control power, the
information needed by the generalized Markov Graph model
is still far less than the information of adjacency matrix A.
And due to the fact that η could be rewritten as [10]:

η = (ΣNi=1di(1 + γi)
α)2 − ΣNi=1di(1 + γi)

α,

the computational cost of such calculation is O(N), which is
the same as that in preferential attachment model.

III. EXPERIMENTS ON CONVERGED BELIEF ESTIMATION

The preferential attachment model and the generalized
Markov Graph model are both tested on real network data [8].
There are 3 different types of social networks: on-line social
networks, p2p transmission networks and physicist collabo-
ration networks. Each of these three different social networks
includes several subtypes of networks. On-line social networks
include Slashdot network data of August 2008 and of February
2009, Wiki-vote network data and Epinions network data. P2p
transmission networks include Gnutella network data at five
different times. And physicist collaboration networks include
collaboration networks of physicists studying astrophysics,
condensed Matter Physics, theoretical high-energy Physics,
experimental high-energy Physics and general relativity. The
names of these 14 subtypes of networks will be denoted by
indices: 1, 2, . . . , 14. From each of these 14 networks, we
sampled 50 sub-networks using the same sampling method.

In this experiment, the accuracy of estimations of converged
belief B(∞) of both models is tested. The control strategy is
set to push neutral public opinions towards positive opinions.
The initial beliefs wi of nodes in network are set to be neutral,
i.e, they obey a uniform distribution on [−1, 1]. For both
the preferential attachment model and the generalized Markov
Graph model, 25 randomly chosen networks are selected from
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each sub-category of networks, and used as a testing set. The
other 25 networks for each sub-category of networks are used
as a training set for the generalized Markov Graph model to
learn a clustering weight α.

A. Preferential Attachment Model

For each of the network samples in the testing set of each
sub-category of networks, a degree list is recorded. The control
set C is set to be the top 5% nodes with the highest degree
in the network, and thus the number of control nodes is set
to be: c = d5%Ne. The controlled belief Ci for nodes in the
control set are set to be 1. For each network sample, the private
belief list wi is generated 100 times according to a uniform
distribution on [−1, 1].

For each of the generated private belief lists, the expected
value of control power 1cpi is calculated as shown in Sec-
tion II-A2 for each of the generated private lists.

And the same network is used for calculating the exact
value of control power according to Eq.(3). Then the relative
error between the 1cpi and the exact value is recorded as the
relative error for this network sample under this belief list.
The 100 relative errors for all generated private belief list are
then averaged and recorded as the relative error of this network
sample. Next, the relative errors for all network samples in the
testing set of each sub-category of networks are averaged and
recorded as the relative error of preferential attachment model
on this sub-category. The relative errors for 14 different sub-
categories of networks are shown in Fig.(2) to compare with
the results from the generalized Markov Graph model.

B. Generalized Markov Graph Model

The first step in a Generalized Markov Graph model is to
learn the clustering weight α from the training sets for each
sub-category of networks. For each training network sample,
the degree list and clustering coefficient list are recorded. The
control set C is set to be the top 5% nodes with highest degree
in the network, and thus the number of control nodes is set
to be: c = d5%Ne. The controlled belief Ci for nodes in the
control set are set to be 1. And 100 private belief lists sampled
from a uniform distribution on [−1, 1] is prepared.

In the training set of each sub-category of networks, for
each network sample and an arbitrary value of α, the expected
control power 2cpi is calculated for each of the 100 private
beliefs. The exact solution of control power is also calculated
for the 100 generated private belief lists. Then the relative
error between the 2cpi and the exact value of the same private
belief list is calculated, then averaged across all generated
private belief lists, and recorded as the relative error for this
network sample. For all 25 network samples in the training
set, the relative errors are calculated and their average value is
recorded as the relative error of this sub-category of networks.
The clustering weight α for the 14 subtypes of networks are:
[-1.00, -1.00, -0.50, -0.30, -0.20, 1.29, 1.52, 1.45, 1.12, 1.48,
-2.57, -2.57, -2.84, 0.52].

The learnt α is then used to test the performance of the
generalized Markov Graph model on the testing set. For each

of the network samples in the testing set, the degree list and
the clustering coefficient list are recorded. The control set is
set as the same as in the training set. The later process is
the same as that in the Preferential Attachment model. The
relative errors for 14 different sub-categories of networks are
shown in Fig.(2), together with the result from the preferential
attachment model.

Fig. 2: Relative error of control powers for the preferential
attachment model (P-A) and the generalized Markov Graph
model (GMG) .

IV. CONCLUSION AND FUTURE RESEARCH

In this paper, we introduced a information flow model
combined with two network models to simulate and calculate
the converged beliefs of agents, as well as optimize the
control strategy in a social network. Compared to a direct
calculation of the converged beliefs, these two models use
less information and require less computational power, but still
with a good accuracy. In addition, the Generalized Markov
Model outperforms the preferential attachment model since it
has a more realistic assumption and uses more information.
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