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Abstract—We propose a Bayesian edge detector to be fed
by polarimetric, possibly multifrequency, SAR data. It can be
used to detect dark spots on the ocean surface and, hence, as
the first stage of a system for identification and monitoring of
oil spills. The proposed detector does not require secondary
data (namely pixels from a slick-free area), but for a certain
a priori knowledge about the spectral properties of the data.
The performance assessment, carried out using both synthetic
and real SAR recordings, shows that it has better capabilities
in terms of detection and false alarms control than previously-
proposed classical (i.e., non-Bayesian) detectors.

I. INTRODUCTION

Synthetic Aperture Radars (SARs) represent a powerful
tool for monitoring oil spills on the sea surface. In practice,
oil floating on the sea surface reduces the energy backscattered
by the illuminated area since oil slicks produce an increased
viscosity of the top layer of the sea surface which damps
out the short gravity and capillary waves responsible for the
amount of backscattered energy measured by the SAR [1].
Nevertheless, other phenomena can produce the same effect on
SAR images (the so-called look-alikes), as low wind, grease
ice, internal waves, rain cells, and biogenic films. For this
reason, monitoring oil spills on the sea surface is a very
challenging task and requires advanced functionalities in order
to discriminate between real oil spills and look-alikes [2]-[5].
In order to increase the detectability of slicks, it has been
proposed to use both multifrequency and multipolarization
data [6]-[14]. In many cases, proposed algorithms assume that
a set of secondary data, i.e., a slick-free area, is available.
However, the availability of such data might be difficult to
meet in many situations of practical interest. In [8]-[12] edge
detectors (EDs) based upon the generalized likelihood ratio test
(GLRT) to be fed by polarimetric and/or multifrequency data
have been proposed. The design of the GLRTs relies on the
assumption that pixels of either a slick-free or a slick-covered
area, within the region under test, can be modeled in terms
of Gaussian vectors with a common (unknown) covariance
matrix. Remarkably, such schemes guarantee the constant false
alarm rate (CFAR) property and, above all, have been proven
effective on real data recordings.

In this paper, we extend the idea to a Bayesian framework.
The Bayesian approach has been already used in the field of
adaptive radar detection in non-homogeneous environments,
see, e.g., [15], [16]. In fact, Bayesian tools are effective to
handle heterogeneities and to include a priori information. The
idea herein pursued is to assume that the covariance matrix of
each pixel is a random quantity with some preassigned a priori

distribution. The adaptive detector can be obtained averaging
out the random covariance matrices from the likelihood func-
tions.

The remaining of the paper is organized as follows: Section
II is devoted to the problem formulation and to the design
of the edge detector while in Section III we carry out a
performance assessment based upon both simulated and real
SAR data.

II. PROBLEM FORMULATION AND DETECTOR DESIGN

Denote by ri,j the N -dimensional vector whose n-th entry,
ri,j(n) say, is the complex reflectivity of the (i, j)-th pixel of
the SAR image in the n-th polarimetric channel, n = 1, . . . , N ,

i.e., ri,j = [ri,j(1) · · · ri,j(N)]T where T denotes transpose.
The aim is to conceive a detector to discriminate between the
H0 hypothesis that M adjacent pixels belong to either a slick-
free or a slick-covered area and the alternative H1 that they
contain the edge of a slick. To this end, denote by S the set of
all pairs of indices corresponding to the M pixels under test;
the idea is that, if those M adjacent pixels contain the edge,
the slick does not cover the entire region under test and we
can split returns into two groups according to their statistical
characterization. Consequently, from a statistical point of view,
we suppose that, conditionally to the covariance matrix, Ri,j

say, polarimetric return ri,j is a zero-mean, complex normal
random vector [17]; in addition, conditionally to the Ri,js,
the ri,js are independent random vectors. In symbols, we
write ri,j |Ri,j ∼ CNN (0,Ri,j). Moreover, we assume that
Ri,j is drawn from a complex inverse Wishart distribution,

with known mean R and ν (> N ) degrees of freedom; the
corresponding probability density function (pdf) can be written
as

p(Ri,j) =

∣∣(ν −N)R
∣∣ν

Γ̃N (ν) |Ri,j |
ν+N

etr
{
−(ν −N)R−1

i,j R
}

(1)

where | · | is the determinant of the matrix argument, etr(·)
stands for the exponential of the trace of the matrix argument,

and Γ̃N (ν) is given by

Γ̃N (ν) = π
N(N−1)

2

N∏

n=1

Γ(ν − n+ 1)

with Γ(x) being, in turn, the Eulerian Gamma function. We
denote this distribution as Ri,j ∼ CW−1

(
(ν −N)R, ν

)
.

It is worth highlighting the role of the parameters of the
distribution. In fact, R represents the expected value of Ri,j

while ν sets the “distance” between R and Ri,j ; as ν increases
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Ri,j is closer to R (in the sense that the variance of Ri,j

decreases). Such a model allows to take into account a certain
statistical variability of polarimetric returns on a pixel-by-
pixel basis. In fact, we could even suppose that the Ri,js
are independent random matrices. However, for the case at
hand, it is reasonable to assume that pixels in spatial proximity
of either a slick-free or a slick-covered area possess one and
the same value of the covariance matrix. In other words, we
assume that Ri,j = M1 for pixels that belong to the slick
and Ri,j = M0 for the remaining pixels of the slick-free

area. Accordingly, we set M 1 ∼ CW−1
(
(ν1 −N)M 1, ν1

)
,

M0 ∼ CW−1
(
(ν0 −N)M 0, ν0

)
, and suppose that M1 and

M0 are independent random matrices. M0, ν0, M 1, and ν1
represent the a priori knowledge on the problem at hand. In
Section III we discuss how to set them. It follows that the
detection problem to be solved can be restated in terms of the
following binary hypothesis test





H0 :

{
ri,j |Mh ∼ CNN (0,Mh) , (i, j) ∈ S
Mh ∼ CW−1

(
(νh −N)Mh, νh

)
, h = 0 or 1

H1 :





ri,j |M1 ∼ CNN (0,M1) , (i, j) ∈ S1

M1 ∼ CW−1
(
(ν1 −N)M1, ν1

)
,

ri,j |M0 ∼ CNN (0,M0) , (i, j) ∈ S0

M0 ∼ CW−1
(
(ν0 −N)M0, ν0

)
,

(2)
where h = 1 (h = 0) if the region under test is completely
covered by the slick (the sea), while the pair (S0,S1) is an
unknown partition of the set S, denoted in the following as
PS ; in particular, S1 is a proper subset of S and represents
the region covered by the slick (under H1), while S0 is the
complement of S1 with respect to S. For future convenience,
let us denote by M0 and M1 the cardinalities of S0 and
S1, respectively (it is then apparent that M = M0 + M1,
M1 6= M ). Thus, h, under H0, and the pair (S0,S1), under
H1, are unknown quantities. Summarizing, we are modeling
the pixels of the region under test in terms of the conditionally,
given the covariance matrices, complex normal model and test-
ing whether the region can be partitioned into two (unknown)
subsets corresponding to two (random) covariance matrices
(for slick-free and slick-covered areas), as an alternative to the
same (random) covariance matrix. According to the Neyman-
Pearson criterion, the optimum solution to the hypotheses
testing problem (2) is the likelihood ratio test, but, for the
case at hand, it cannot be implemented since total ignorance
of the parameter h, under H0, and the pair (S0,S1), under
H1, is assumed. We thus switch to a GLRT-based decision
scheme. The GLRT is tantamount to replace the unknown
parameters with their maximum likelihood estimates under
each hypothesis based on the entirety of data, namely to
implement the following decision rule

Λ(r) =

max
PS∈G(S)

p(r|PS , H1)

max
h∈{0,1}

p(r|h,H0)

H1
>
<
H0

γ (3)

where r denotes the vector obtained by stacking up the vectors
ri,j , (i, j) ∈ S, G(S) is a collection of partitions of S,
p(r|PS , H1) and p(r|h,H0) are pdfs of r under H1 and
H0, respectively, and γ is the threshold value set in order to
ensure the desired probability of false alarm (Pfa). Subsequent

developments require specifying the pdf of r under both
hypotheses. Previous assumptions imply that the pdf of r,
given Mh under H0 and given M0 and M1 under H1, can
be written as

p(r|Mh, H0) =

[
1

πN |Mh|

]M
etr


−M

−1
h

∑

(i,j)∈S

ri,jr
†
i,j




under the H0 hypothesis and

p(r|PS ,M 0,M1, H1)

=

(
1

πN |M 0|

)M0

etr



−M
−1
0

∑

(i,j)∈S0

ri,jr
†
i,j





×

(
1

πN |M1|

)M1

etr



−M
−1
1

∑

(i,j)∈S1

ri,jr
†
i,j





under the H1 hypothesis, where † denotes conjugate transpose.
Moreover, the pdf of r, under H0, can be computed averaging
Mh out of the p(r|·)

p(r|h,H0) =

∫
p(r|Mh, H0)p(Mh)dMh.

Similarly, we have that

p(r|PS , H1) =

∫
p(r|PS ,M0,M1, H1)

× p(M 1)p(M0)dM1dM0.

Using the fact that the inverse Wishart distribution is a conju-
gate prior [18], the above integrals can be easily computed (see
also [15]) and, after some algebra, the GLRT can be re-written
(up to an irrelevant positive factor) as

min
h∈{0,1}

Γ̃N (νh)
∣∣∣
∑

(i,j)∈S ri,jr
†
i,j + (νh −N)Mh

∣∣∣
νh+M

Γ̃N (νh +M)
∣∣(νh −N)Mh

∣∣νh

× max
PS∈G(S)





Γ̃N (ν0 +M0)∣∣∣
∑

(i,j)∈S0
ri,jr

†
i,j + (ν0 −N)M0

∣∣∣
ν0+M0

×
Γ̃N (ν1 +M1)∣∣∣

∑
(i,j)∈S1

ri,jr
†
i,j + (ν1 −N)M 1

∣∣∣
ν1+M1






H1
>
<
H0

γ. (4)

Now it only remains to perform maximization with respect to
the unknown partition PS of the set S under the H1 hypothesis.
As in [11], [19], we propose to maximize over a subset of
partitions G(S) of the scene under test. A possible choice for
the elements of the set G(S) is given in Fig. 1: the dark zone
represents the set S1, while the white one indicates the set S0;
more details on such choice are given in Sect. III. The above
derivation can be straightforwardly extended to the case that
returns from more than one frequency band are available. To
this end, we denote by r

(B) the polarimetric vector obtained by
stacking up the vectors associated with returns from pixels of

the region under test in the B frequency band, r
(B)
i,j , (i, j) ∈ S,

say. The GLRT on two frequency bands can be re-written as

min
h∈{0,1}

max
PS∈G(S)

Λ(B1)(r(B1))Λ(B2)(r(B2))
H1
>
<
H0

γ (5)
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where

Λ(B)(r(B)) =
Γ̃N

(
ν
(B)
h

)

Γ̃N

(
ν
(B)
h +M

)

×

∣∣∣
∑

(i,j)∈S r
(B)
i,j r

(B)†
i,j +

(
ν
(B)
h −N

)
M

(B)

h

∣∣∣
ν
(B)
h

+M

∣∣∣
(
ν
(B)
h −N

)
M

(B)

h

∣∣∣
ν
(B)
h

×
Γ̃N

(
ν
(B)
0 +M0

)

∣∣∣
∑

(i,j)∈S0
r
(B)
i,j r

(B)†
i,j +

(
ν
(B)
0 −N

)
M

(B)

0

∣∣∣
ν
(B)
0 +M0

×
Γ̃N

(
ν
(B)
1 +M1

)

∣∣∣
∑

(i,j)∈S1
r
(B)
i,j r

(B)†
i,j +

(
ν
(B)
1 −N

)
M

(B)

1

∣∣∣
ν
(B)
1 +M1

.

(6)

GLRTs (4) and (5) will be referred to in the following as
Bayesian edge detectors (B-EDs).

III. PERFORMANCE ASSESSMENT

In this section, we assess the performance of the pro-
posed algorithm using both simulated and real data. For
comparison purposes we also consider a previously proposed,
classical (i.e., non-Bayesian) ED, referred to in the following
as deterministic ED (D-ED) [8], [9], [11], [12]. All of the
needed parameters have been set based on a polarimetric
and multifrequency SAR image (L and C frequency bands)
collected during the SIR-C/X-SAR mission. More specifically,
we have processed non-calibrated, single-look complex data
of the North Sea (Germany) collected at 54o58′N 7o45′E,
October 6, 1994, with resolution of 22 m in ground range and
6.2 m in azimuth. In particular, both EDs assume N = 3 and
use VV, HH, and VH+HV polarimetric channels. An image
of the sensed scene is displayed in Fig. 2: it contains several
slicks, deployed as part of an experimental campaign aimed
at assessing to what extent polarimetric and multifrequency
SAR data could be exploited for detecting surface films with
different viscoelastic properties, see [6], [12] and references
therein for more details. Remember that the B-ED requires

knowledge of the matrices M
(B)

1 and M
(B)

0 . To this end, we

have estimated M
(B)

0 , B = L,C, by the sample covariance
matrix based on the overall data of the available SIR-C/X-

SAR image in the B band. As to M
(B)

1 , we have used the

following matrices M
(C)

1 = σ2(C)diag(6, 3, 2) and M
(L)

1 =
σ2(L)diag(13, 4, 1) with σ2(C) = σ2(L) = 10−3. Again, the
values on the diagonal of the above matrices roughly fit those
obtainable from real data (over pixels of the slicks). Moreover,

the B-ED assumes ν
(B)
h = 5, h = 0, 1, corresponding to

a high variability of the Ri,js. The Pfa is set to 10−3 and
the corresponding thresholds have been evaluated over 105

Monte Carlo runs using data simulated according to the models
described in Section II with h = 0 (slick-free area). We
have thus applied the B-ED and the D-ED to the simulated
image of Fig. 3 and to the real image shown in Fig. 2. The
tests have been applied over overlapping windows (of M
pixels) with the current one obtained by shifting the previous

Fig. 1. Templates used to maximize the likelihood function under H1: the
black zone represents S1.

Fig. 2. SIR-C/X-SAR image under test (C-Band, VV polarization), 1000
pixels in range and 5000 in azimuth.

window of 1 pixel in range or in azimuth. In Figs. 4-5 we
report the output of the EDs, fed by the synthetic image
of Fig. 3, for the case M = 16: the superiority of the B-
ED, compared to the D-ED, is apparent, while for M = 64
(not reported here for brevity) the two EDs provide a similar
performance. In Figs. 6-7 we report, instead, results obtained
applying tests to the real data data corresponding to the scene
depicted in Fig. 2. The original image has been decimated by
a factor 2 in range and 3 in azimuth in order to come up
with independent adjacent pixels [20] (given the VV or HH
polarimetric channel, and given the Ri,j). We set M = 100 in
order to obtain satisfactory performance on real data (M = 64
provides practically the same performance). Inspection of the
figures highlights that five out of the seven deployed slicks are
detected. Summarizing, it is apparent that the B-ED guarantees
an actual Pfa closer to the nominal one (i.e., 10−3) than that
of the D-ED; moreover, the detectors have almost the same
power; actually, the B-ED is slightly superior to the D-ED. As
a final comment, it is instructive to note that the B-EDs are not
so different from their classical counterparts; however, in the
proposed schemes, we have introduced the a priori knowledge,

namely the M
(B)

h s, that counterbalances, in a way depending

on the ν
(B)
h s, the influence of the sample covariance matrices

estimated on the data.
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