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On Marginal Particle Filters with Linear Complexity
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Abstract—The choice of proposal distribution affects critically
the efficiency of a particle filter (PF). When it is not feasible to
increase the number of particles, then more advanced proposals
may avoid particle depletion. One further option is to compute
the marginal posterior distribution. However, exact marginaliza-
tion has quadratic complexity in the number of particles. This
contribution discusses and compares some ideas for implementing
a marginal PF with linear complexity, leading to an accept-reject
algorithm. However, it turns out that the proposed solution can be
interpreted as a way to implement the optimal proposal. Different
proposals with and without marginalization are compared on a
simple example.

I. INTRODUCTION

Particle filtering (PF) as a research area started with the
seminal paper [5], and the independent developments in [8],
[7]. The key contribution was to introduce a resampling step to
mitigate the depletion problem in simulation based approaches
that have been around for a long time. Mitigating depletion
has ever since the beginning been the most pressing issue in
applied particle filtering. The state of the art is summarized
in the article collection [4], the surveys [10], [1], [3], [2], [6],
and the monograph [14].

The PF inherently estimates the state trajectory, not the
filter density as is the output from the Kalman filter for
instance. Although the marginal distribution can be trivially
derived from the trajectory density, dedicated algorithms to
compute the marginal density have been in focus for the last
decade. Hereafter, this will be refered to as marginal particle
filters (mPF). The key motivation is to decrease the weight
variance, and thus decrease the sample depletion problem. A
good indicator for this is the efficient number of particles. The
mPF should have a larger efficient number of particles than
the corresponding PF without marginalization.

The mPF has been proposed for system identification prob-
lems where some of the states are stationary [12], [13].
Stationary parameters are particular sensitive to depletion,
since there is no inherent forgetting of the past. The idea in
[12], [13] is to compute the gradient search of the marginal
distribution with respect to the unknown parameters. The same
parametric approach has been suggested for SLAM in [11] and
optimal trajectory planning in [15].

II. THE PARTICLE FILTER

The particle filter applies to a dynamic model, either given
in state space form or as conditional probability functions,

xk+1 = f(xk, vk) or p(xk+1|xk), (1a)
yk = h(xk, ek) or p(yk|xk). (1b)

The particle filter recursion at time k for N particles x(i)k−1 with
associated weights w(i)

k−1|k−1 can be summarized as follows.
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1) Weight update: Time and measurement updates:
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2) Resampling: Optionally at each time, take N samples
with replacement from the set {x(i)1:k}Ni=1 where the
probability to take sample i is w(i)

k|k and let w(i)
k|k = 1/N .

3) Prediction: Generate samples from the proposal

x
(i)
k+1 ∼ q(xk+1|x(i)k , yk+1) (2c)

The most natural proposal distributions are
• The prior q(xk+1|x(i)k , yk+1) = p(xk+1|x(i)k ).
• The likelihood q(xk+1|x(i)k , yk+1) ∝ p(yk+1|xk+1).
• The optimal (minimizing weight variance) choice
q(xk+1|x(i)k , yk+1) ∝ p(yk+1|xk+1)p(xk+1|x(i)k ).

The optimal proposal keeps the weights constant, and this
would in theory avoid depletion, where depletion is interpreted
as excessive weight variance. The practical limitation with the
last two alternatives is that there need to be more measure-
ments than states in the model.

III. THE MARGINAL PARTICLE FILTER

The PF approximates the posterior distribution p(x1:k|y1:k)
of the state trajectory x1:k, while the purpose of the marginal
particle filter (mPF) is to approximate the filter distribution
p(xk|y1:k). The principal relation between these two distribu-
tions is given by the marginalization integral

p(xk|y1:k) =

∫
p(x1:k|y1:k) dx1:k−1. (3)

To start an inductive derivation of the mPF, suppose that we
at time k have an approximation of the marginal filter density
of the form

p(xk|y1:k) =

N∑
i=1

w
(i)
k|kδ(xk − x

(i)
k ). (4)

There are a few different alternatives to proceed described in
the following sections.

A. Sampling and Marginalization
The standard (trajectory) PF samples a new state from the

proposal distribution and modifies the weights according to
the importance sampling principle. The new sample is then
appended to the previous one x(i)k:k+1 = {x(i)k , x

(i)
k+1}. We then

have an approximation of the form

p(xk:k+1|y1:k) =

N∑
i=1

w
(i)
k+1|kδ(xk − x

(i)
k )δ(xk+1 − x(i)k+1),

(5)
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which is trivially marginalized to

p(xk+1|y1:k) =

∫
p(x

(i)
k:k+1|y1:k)dxk (6)

=

N∑
i=1

w
(i)
k+1|kδ(xk+1 − x(i)k+1) (7)

That is, a straightforward application of the marginalization
principle does not affect the result, and will not improve on
the depletion problem.

B. Marginalization before Sampling
A more promising approach is based on applying the

marginalization principle in the prediction step

p(xk+1|y1:k) =

∫
p(xk:k+1|y1:k)dxk (8)

=

∫
p(xk+1|xk)p(xk|y1:k)dxk. (9)

Using the filter approximation (4) gives

p(xk+1|y1:k) =

N∑
i=1

w
(i)
k|kp(xk+1|x(i)k ). (10)

This is an analytic form of the prediction density where no
further approximations besides (4) have been done. There are
now several ways to sample from (10).

C. Marginalization and Multinomial Sampling
The predictive density (10) is a mixture distribution, which

can be sampled from directly, using the following algorithm:
1) Select N indeces ij , j = 1, . . . , N from the multinomial

distribution specified by the weights {w(j)
k|k}

N
j=1.

2) For each index, sample x
(j)
k+1 ∼ p(xk+1|x

ij
k ), j =

1, . . . , N .
This has linear complexity. However, this is exactly what
is done in the SIR (or bootstrap) PF, which performs a
resampling step corresponding to the multinomial sampling,
followed by a prediction.

D. Marginalization and Systematic Sampling
The standard approach in literature appears to be to re-use

the set of particles from the sampling exactly as it is. This
gives

p(xk+1|y1:k) =

N∑
i=1

w
(i)
k+1|kδ(xk+1 − x(i)k+1), (11a)

w
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This can be seen as systematic sampling in the available set of
particles, where all samples are selected in turn, and the weight
is updated accordingly. Note that the complexity increases
from O(N) in the PF to O(N2) in the marginal PF, due to the
computation of the new importance weights. However, a sound
approximation with O(N log(N)) complexity is suggested in
[9].

E. Marginalization and Importance Sampling
The idea is here to use the standard PF in (2) with simple

marginalization to get the proposal p(xk+1|y1:k+1) in an
importance sampling scheme. That is, generate samples x(j)k+1

from the set {x̄(i)k+1}Ni=1 according to the weights {w̄(i)
k+1|k}

N
i=1,

where the bar indicates that this is a preliminary set of samples.
The weights for the marginal distribution are then modified by
the importance sampling principle,

w
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j=1 w
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w̄
(i)
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Again, the complexity is quadratic due to the sum.

F. Marginalization and Accept-Reject Sampling
The key idea in the marginalization is to break up the

particle pair associations,

x
(i)
k ↔ x

(i)
k+1, (13)

from the prediction step. The systematic and importance sam-
pling principles above both lead to that all possible paths from
all x(j)k to each x(i)k+1 are considered, which is the source for
the quadratic complexity. Now, we randomize the associations

x
(j)
k ↔ x

(i)
k+1, (14)

by randomly choosing pairs i, j with the following accept-
reject algorithm:

1) Generate a random index ik from the multinomial dis-
tribution specified by {w(i)

k|k}
N
i=1.

2) Generate a random index jk from the multinomial dis-
tribution specified by {w(j)

k+1|k+1}
N
j=1.

3) Generate a uniform random number u.
4) Accept xjkk+1 if

p(xjkk+1|x
ik
k )

wjk
k+1|k+1M

> u. (15)

5) Repeat until N samples xjkk+1 are obtained.
The accept-reject algorithm requires that the left hand side

of (15) is always less than one. That is, we have to choose the
normalization factor M such that

M ≥
p(xjkk+1|x

ik
k )

wjk
k+1|k+1

(16)

If we use the particles after the resampling step in the basic PF
(2), we have wjk

k+1|k+1 = 1/N , so the denominator is bounded
from below. The Markov model assures that p(xk+1|xk) is
bounded, since all non-degenerate distributions are bounded.

For instance, a typical model with additive Gaussian noise

xk+1 = f(xk) + vk, (17a)
vk ∈ N(0, Q), (17b)

implies an upper bound

p(xk+1|xk) ≤ (det 2πQ)−1/2. (18)

Thus, we can take

M = N(det 2πQ)−1/2 (19)
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in the case of additive Gaussian noise.
The interpretation is that this leads to a two step procedure:
1) A non-SIR PF is used to provide a set of candidate

particles. Both the measurement update and resampling
steps are required. There is as usual in the PF fixed
association of particle pairs x(i)k and x

(i)
k+1. Note that

the marginal distribution of a SIR PF is identical to the
trajectory distribution, so there is no point to approxi-
mate the marginal further.

2) The second step reorders these associations randomly
using accept-reject sampling.

IV. ILLUSTRATION

Various proposal distributions will be compared on a fun-
damentally simple example that enables closed form simple
expressions. Consider a first order linear Gaussian system

xk+1 = fxk + vk, vk ∼ N(0, Q). (20)
yk = hxk + ek, ek ∼ N(0, R), (21)
x0 ∼ N(x̄0, P0). (22)

Let, again for simplicity, f = h = 1, x̄0 = 1, P0 = 0.1,
R = 0.1. The process noise variance Q ∈ [10−4, 1] will be
varied to examine different signal to noise ratios (SNR), here
defined as Q/R.

To make the simulation study as simple and transparent as
possible, only two time steps k = 1, 2 will be simulated. The
purpose of the first time step is to normalize information to
the current SNR, and the second one is for computing the
root mean square error (RMSE) for the following different
proposals:

1) Prior proposal

x
(i)
2 ∼ N(x2 − hx(i)1 , Q), (23)

ω
(i)
2 = ω

(i)
1 N(y2 − hx(i)2 , R). (24)

2) Likelihood proposal

x
(i)
2 ∼ N(y2/h,R/h

2), (25)

ω
(i)
2 = ω

(i)
1 N(x

(i)
2 − hx

(i)
1 , Q). (26)

The proposal follows by solving the measurement equa-
tion for x2 = (y2 − e2)/h.

3) Optimal proposal

x
(i)
2 ∼ N(x

(i)
1 +K(y2 − hx(i)1 ), P ), (27)

ω
(i)
2 = ω

(i)
1 . (28)

where

K =
Qh

h2Q+R
, (29)

P = Q− h2Q2

h2Q+R
=

QR

h2Q+R
. (30)

The optimal proposal follows from the Kalman filter,
starting with a given particle x

(i)
1 , which has zero

variance.

4) Likelihood proposal with full marginalization.

x
(i)
2 ∼ N(y2/h,R/h

2), (31)

ω
(i)
2 =

N∑
j=1

ω
(j)
1 N(x

(i)
2 − hx

(j)
1 , Q). (32)

5) Likelihood proposal with accept/reject marginalization,
where a sample x(i)2 ∼ N(y2/h,R/h

2) is accepted if(
x
(i)
2 − fx

(i)
1

)
Q

< − log(u) (33)

where u is a random number from the standard uniform
distribution.

6) The Kalman filter solution, which provides the Cramer-
Rao lower bound (CRLB) for this problem. The variance
updates can be simplified to

P1|1 =
P0R

P0 +R
, (34)

P2|1 = P1|1 +Q, (35)

P2|2 =
P2|1R

P2|1 +R
. (36)

The results from 5000 Monte Carlo simulations with N = 100
are summarized in Figure 1 and below:

• For low SNR, the prior proposal reaches the CRLB,
while the likelihood proposal reaches the CRLB for high
SNR. This is according to intuition, the most informative
proposal should give the best result.

• The full marginalization improves the RMSE slightly for
the likelihood proposal.

• The accept/reject marginalization improves the RMSE for
high SNR’s. To understand why, the acceptance rate is
plotted against SNR in Figure 2. As seen, the acceptance
rate is very small for low SNR.

• Figure 3 shows that the computation time of the like-
lihood proposal with accept-reject sampling has linear
complexity over the whole range, though the constant
term is quite high (similar to full marginalization).

• The accept/reject algorithm simplifies a lot for this
concrete example, and there are probably many other
interpretations of the algorithm than the one presented
here: to randomize the connections between particle i and
j in the full marginalization step.

The accept-reject algorithm was derived to avoid the quadratic
complexity in marginalization. However, for this concrete
example where the likelihood is used as proposal of samples,
another interpretation is that it implements an accept-reject
version of the optimal proposal.
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Fig. 1. RMSE for different proposal distributions.

Fig. 2. Acceptance probability (with confidence interval) for likelihood
proposal as a function of SNR.

Fig. 3. Comparison of how the computation time depends on the number of
particles for the different algorithms.

VI. CONCLUSIONS AND DISCUSSION

Marginalization of the particle filter posterior distribution
has been proposed as one way to mitigate depletion problems.
Straightforward marginalization has quadratic complexity. One
approximation suggested in literature has N log(N) complex-
ity. The purpose of this contribution was to find implemen-
tations with linear complexity, leading to an accept-reject
algorithm.

There are several natural alternatives for the choice of
proposal distribution (prior, likelihood, optimal), where one
can try to marginalize (or smooth) the posterior distribution.
However, there are several pitfalls for the user.
• If the most natural prior is used as proposal, then

marginalization has no effect at all.
• If the optimal proposal is used, there is no need for

marginalization, since the variance of the weights is
constant. Thus, there is no depletion problem at all in
this case (in theory).

• If the likelihood is used as proposal, then the simple
example showed that marginalization gives a significant
increase in performance for high SNR’s. However, the
algorithm presented here can be seen as a way to imple-
ment the optimal proposal.

A fundamental question remains to be answered: Does there
exist a simple example where mPF outperforms PF?
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