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Abstract—This short paper focuses on the structure of the
data association problem and details a solution based on the
introduction of distinguishability in the representation of a given
stochastic population. This approach allows for the derivation of
general filtering equations for independent stochastic populations.
Based on these general equations, the concept of association
measure is defined recursively.

INTRODUCTION

Multi-object estimation has been an active area of research
for decades; the underlying challenge is to estimate the state
of a varying number of objects subject to a random, and
possibly spurious observation [1]. One of the most popular
approaches for tackling this problem is known as the Prob-
ability Hypothesis Density filter, or PHD filter [2], [3]. It is
based on Random Finite Set (RFS) theory [4] which has been
successfully applied on a broad range of applications. Recent
research includes the connection between spatial branching
processes and the PHD recursion [5], the study of spatial
cluster modelling [6], and the derivation of spatial second
moment for the multi-object posterior [7], [8].

The PHD filter relies on a Poisson i.i.d. approximation
for describing stochastic populations, and propagates the first
moment density, or intensity, of the associated multi-object
posterior. In the PHD filter, as well as in most of the filtering
equations based on the concept of point processes, points are
assumed to be indistinguishable, and no information about
specific individuals in the population can be learned directly.

In this paper, after introducing some notations in Section
I, a new approach based on the concept of distinguishability is
considered for the representation of stochastic populations in
Section II. Based on this concept, general multi-object filtering
equations for independent populations are derived in Section
III. These filtering equations are written in terms of association
measure, in order to exhibit their structure.

I. NOTATIONS

Throughout the paper, the main results will be stated using
the formalism of probability theory. Even though this choice is
not the most usual in the area of multi-target tracking [1], the
concepts and notations of probability theory are well suited to
the topic of the paper and make the statement of the results
simpler.

Henceforth, M(E) will stand for the set of finite positive
measures on a given measurable space (E, E), while P(E)
will be the set of probability measures on (E, E). Additionally,
the Banach space of all bounded and measurable functions

equipped with the uniform norm ‖ · ‖ will be denoted B(E),
and we write µ(f) =

∫
µ(dx)f(x) for any µ ∈M(E).

A bounded positive integral operator Q from a measurable
space E into a measurable space E′ is an operator f 7→ Q(f)
from B(E) to B(E′) such that the functions

x 7→ Q(f)(x) =

∫
E′
Q(x,dy)f(y)

are bounded and measurable for some measure Q(x, ·) ∈
M(E′). If Q(1)(x) = 1 for any x ∈ E, then Q is referred to
as a Markov kernel from E to E′.

Let G : x ∈ E 7→ G(x) ∈ (0,∞) be a bounded
positive potential function. The following change of probability
measures is referred to as Boltzmann-Gibbs transformation [9]:

ΨG : η ∈M(E) 7→ ΨG(η) ∈ P(E) (1)

where, assuming η(G) > 0, ΨG(η)(dx) = 1
η(G)G(x)η(dx).

Also, the function mapping tuples to the associated sets
is denoted F 1. This function is useful since it allows set
operations to be directly applied. In the next section, the
concept of distinguishability is introduced for point processes
and a solution to the problem of data association is deduced.

II. REPRESENTATION OF STOCHASTIC POPULATIONS

A. Distinguishable and indistinguishable individuals

Let X be a stochastic population described in the prob-
ability space (Ω,F ,P). We represent the individuals of the
population in the space Es = φs ∪X, where X is a complete
separable metric space, and where φs represents the case where
a given individual does not have any image in X. Based on
Es, the space of distinguishable and indistinguishable sets of
individuals can be expressed as:

E =
⋃
i,j≥0

Eis × (Ejs / ∼), (2)

where ∼ is an equivalence relation defined as follows: for any
n ∈ N \ {0}, and for any x1, x2 ∈ Ens , x1 ∼ x2 if and only if

∃σ ∈ Sn, (x1,1, . . . , x1,n) = (x2,σ(1), . . . , x2,σ(n)),

with Sn the symmetric group on n letters.

The subspace Ens (resp. Ens / ∼) is the space of n distin-
guishable (resp. indistinguishable) individuals. More sophis-
ticated spaces can be introduced, however, the focus of this
paper is on independent populations so that E is sufficiently

1This “function” can be properly defined as a functor in category theory.
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general to represent the stochastic population X . The object of
interest is the point process Φ defined as a measurable mapping
from (Ω,F ,P) to (E, E). Note that the probability measure
p ∈ P(Ens ) induced by Φ on Ens can be non-symmetric while
the probability measure p̄ ∈ P(Ens / ∼) induced by Φ on
Ens / ∼ is defined on equivalence classes and is therefore
understood as symmetric.

B. The data association problem

The observation of X is represented by a point process
Φ′ from (Ω,F ,P) to (E′, E ′), where E′ is defined as

E′ =
⋃
i,j≥0

E′is × (E′js / ∼), (3)

where E′s is the individual space defined as E′s = φ′s ∪ Z,
with Z a complete separable metric space. The objective is to
understand how an event in E′ relates to events in E. Note
that in a realisation of Φ′, the only indistinguishable points
in E′ are the unobserved individuals of X , therefore, any
indistinguishable point z̄ ∈ E′ verifies z̄ = φ′s.

The data association problem can be formulated in the
product space E × E′. However, when assuming that there
is a one-to-one correspondence between individuals in E and
observations in E′, we can alternatively study data association
in the subspace

E� =
⋃

i1,...,i4≥0

(
Es × E′s

)i1 × ((Es × E′s)i2/(O,∼)
)

×
(
(Es × E′s)i3/(∼, O)

)
×
(
(Es × E′s)i4/(∼,∼)

)
, (4)

where O is the least equivalence relation on Ens and E′ns for
any n ∈ N\{0}. For instance, the equivalence relation defined
as ∼r = (O,∼) on (Es × E′s)n is such that for all sequences
y, ŷ ∈ (Es × E′s)n, it holds that y ∼r ŷ if and only if there
exists σ ∈ Sn for which(

(x1, z1), . . . , (xn, zn)
)

=
(
(x̂1, ẑσ(1)), . . . , (x̂n, ẑσ(n))

)
.

After endowing E� with the σ-algebra E�, one can define
a point process Φ� as a measurable mapping from (Ω,F ,P)
to the measurable space (E�, E�). Four different subspaces
appear in the expression of E�, hence it is useful to study
the behaviour of joint events on these subspaces separately
before combining the results to solve the general problem.

1) Observed distinguishable individuals: Consider the
event y ∈ B/. = (x ∈ B) ∧ (z ∈ B′), where ∧ is the logical
and, B ∈ E⊗ns , with ⊗ the σ-algebra product, and B′ ∈ E ′⊗ns ,
defined as

y ∈ B/. = (x1 ∈ B1, . . . , xn ∈ Bn)∧(z1 ∈ B′1, . . . , zn ∈ B′n),

where the xi’s and the zi’s are distinguishable points. The
event y ∈ B/. is equivalent to a specific event in E�:

y ∈ B/. ⇔
∨
σ∈Sn

n∧
i=1

(xi, zσ(i)) ∈ Bi ×B′σ(i) (5)

where the notation (xi, zσ(i)) implies that xi and zσ(i) repre-
sent the same individual and where ∨ is the logical or. We
assume that two different points of a point process cannot
represent the same individual so that the events in (5) are

mutually exclusive. Denoting X = F (B) and X ′ = F (B′),
the joint probability measure p/. ∈ P(E×E′), induced by Φ
and Φ′, can be expressed in terms of the probability measure
p� ∈ P(E�), induced by Φ�, as

p/.(B/.) = p�(Tas(X,X
′))

=
∑
σ∈Sn

p�
(
(B1 ×B′σ(1))× . . .× (Bn ×B′σ(n))

)
,

where the mapping Tas, with “as” for “association”, corre-
sponds to the equivalence (5) but for measurable subsets.

2) Observed indistinguishable individuals: Consider the
event y ∈ B/. = (x̄ ∈ B̄) ∧ (z ∈ B′) with B ∈ Ē⊗ns , the
σ-algebra on Ens / ∼, and B′ ∈ E ′⊗ns , defined as

y ∈ B/. = (x̄1 ∈ B̄1, . . . , x̄n ∈ B̄n)∧(z1 ∈ B′1, . . . , zn ∈ B′n),

where the x̄i’s represent indistinguishable individuals. The
event y ∈ B/. is equivalent to a specific event in E�:

y ∈ B/. ⇔
∨
σ∈Sn

n∧
i=1

(x̄i, zσ(i)) ∈ B̄i ×B′σ(i), (6)

where there is no identification between x̄i and zσ(i) since
x̄i does not represent a specific individual of the population
X . The events composing (6) are not mutually exclusive,
however, when setting B̄i = Es, for any 1 ≤ i ≤ n, they
become all equivalent. In this case, denoting X ′ = F (B′),
the equivalence (6) can be expressed as a mapping Tfa, with
“fa” for “false alarm”, as follows:

Tfa(X ′) = (Es ×B′1)× . . .× (Es ×B′n).

The choice B̄i = Es is justified in practice since the interest
lies in the probability for a given observation to be a false
alarm or an appearing individual; and the localisation in Es

does not help because this information cannot be specific.

3) Unobserved distinguishable and indistinguishable indi-
viduals: Consider the event y ∈ B/. = (x ∈ B) ∧ (z̄ ∈ B̄′),
with B ∈ E⊗ns and B̄′ ∈ Ē ′⊗ns , defined as

y ∈ B/. = (x1 ∈ B1, . . . , xn ∈ Bn)∧(z̄1 ∈ B̄′1, . . . , z̄n ∈ B̄′n).

In this case, we know that z̄1 = . . . = z̄n = φ′s with
probability 1, so that denoting X = F (B), the function Tmd
corresponding to the previous equivalence can be written

Tmd(X) = (B1 × φ′s)× . . .× (Bn × φ′s),

where “md” stands for “missed-detection”. The same result
holds when B ∈ Ē⊗ns and when Bi = Es for any 1 ≤ i ≤ n,
then the corresponding mapping is denoted Tr and defined as
Tr(n) = (Es×φ′s)n, where the subscript “r” is for “remainder”.

4) General association: Before demonstrating the main
result, additional notations are required for the sake of com-
pactness. Let X and X ′ be two sets of the same size, then
SX,X′ is the set of all bijections between X and X ′ and the
function F is defined as

F (X,X ′) =
⋃

f∈SX,X′

((
y, f(y)

))
y∈X

. (7)
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Proposition 1: Let X and X ′ be two sets of the same size
and let X ′ = X ′1 ∪X ′2. If X ′1 ∩X ′2 = ∅, then

F (X,X ′) =
⋃

X̂⊆X:|X̂|=|X′1|

(
F (X̂,X ′1), F (X̂c, X ′2)

)
.

This proposition states that the union over all possible
associations between X and X ′ can be reformulated as the
union over all possible ways of distributing elements of X
among X ′1 and X ′2 and then considering the union over all
possible associations in the corresponding subsets. In the
following theorem, the results of the previous sections are
combined to solve the general data association problem.

Theorem 1 (Data Association): Let B/. be a measurable
subset in E ⊗ E ′ with B/. = (B × B̄)× (B′ × B̄′) such that

B ∈ E⊗ns , B̄ = En̄s , B′ ∈ E ′⊗ks , B̄′ = φ′k̄s ,

where k + k̄ = n+ n̄, and let X = F (B) and X ′ = F (B′).
The measurable subset B/. can be expressed in E�, via X and
X ′, through the following mapping:

T ∗� (X,X ′, n̄) =⋃
Y⊆X,Y ′⊆X′
|Y |=|Y ′|

Tas(Y, Y
′)× Tfa(Y ′c)× Tmd(Y c)× Tr(n̄− |Y ′c|),

and we additionally define T�(B/.) = T ∗� (X,X ′, n̄).

Proof: Let X̄ = F (B̄), X̄ ′ = F (B̄′) and U = X ∪ X̄ .
Applying Proposition 1 on U and X ′ ∪ X̄ ′ gives

F (U,X ′ ∪ X̄ ′) =
⋃

X̂⊆U :|X̂|=k

F (X̂,X ′)× F (X̂c, X̄ ′).

The set X̂ is composed of elements from both X and X̄ so
that, denoting Y = X̂ ∩X and Ȳ = X̂ ∩ X̄ and noting that
X̂c = Y c ∪ Ȳ c when taking the complement of Y and Ȳ in
X and X̄ respectively, we can write

F (U,X ′∪ X̄ ′) =
⋃

Y⊆X,Ȳ⊆X̄
|Y |+|Ȳ |=k

F (Y ∪ Ȳ , X ′)×F (Y c∪ Ȳ c, X̄ ′),

it is thus possible to further develop the expression as follows:

F
(
Y ∪ Ȳ , X ′

)
=

⋃
Y ′⊆X′:|Y ′|=|Y |

F (Y, Y ′)× F (Ȳ , Y ′c),

F (Y c ∪ Ȳ c, X̄ ′) =
⋃

Ȳ ′⊆X̄′:|Ȳ ′|=|Y c|

F (Y c, Ȳ ′)× F (Ȳ c, Ȳ ′c).

However, the choices Ȳ ⊆ X̄ and Ȳ ′ ⊆ X̄ ′ are irrelevant and
it holds that |Ȳ | = k − |Y ′| and |Ȳ ′| = n − |Y | so that the
overall union simplifies to a union over {Y ⊆ X,Y ′ ⊆ X ′ :
|Y | = |Y ′|}. Finally, the following identifications allow to
prove the desired result: F (X∪X̄,X ′∪X̄ ′) = T ∗� (X,X ′, |X̄|)
as well as F (Y, Y ′) = Tas(Y, Y

′), F (Ȳ , Y ′c) = Tfa(Y ′c),
F (Y c, Ȳ ′) = Tmd(Y c) and F (Ȳ c, Ȳ ′c) = Tr(|Ȳ c|).

Theorem 1 can be interpreted as follows: a given observa-
tion z can be either associated with a distinguishable individual
or understood as a false alarm or an appearing individual.
Also, a given distinguishable individual can be either detected
or missed-detected. Even though this result is intuitive, we
have seen that the introduction of distinguishability allows for
demonstrating it using only simple probability rules.

III. ASSOCIATION MEASURE

In this section, the objective is to detail and justify the form
of the prediction and correction steps for a representation of
the independent stochastic population X .

The random (finite) observation set at time t is denoted Zt
and Zt is the observation random measure at time t, defined
as

Zt =
∑
z∈Zt

δz,

where δz is the Dirac measure at z. Additionally, we denote
Zs
t = Zt ∪ φ′s and Zs

t = Zt + δφ′s the observation set and
random measure including the empty observation φ′s. Also, let
the set Y s

t of sequences of observations be defined as

Y s
t =

{
(z0, . . . , zt) : zt′ ∈ Zs

t′ , 0 ≤ t′ ≤ t
}
,

and let ys,t ∈ Y s
t be such that zt′ = φ′s, 0 ≤ t′ ≤ t. Elements

in Y s
t are called observation paths up to time t and we define

Yt = Y s
t \ ys,t.

Let Ât (resp. At) be the updated (resp. predicted) asso-
ciation measure at time t, describing the probability of the
observation paths in Yt (resp. Yt−1), defined as

Ât =
∑
y∈Yt

âyδy and At =
∑

y∈Yt−1

ayδy,

where ay, ây ∈ [0, 1] for any y ∈ Yt. Furthermore, we define
As
t = At + δys,t−1

. Note that ays,t = 1 at any time t.

Let p̂(y)
t ∈ P(X) (resp. p(y)

t ∈ P(X)) be the law of
the updated (resp. predicted) state of the hypothesis with
observation path y ∈ Yt (resp. y ∈ Yt−1) at time t. The
distribution p

(ys,t−1)
t ∈ P(Es) is the (common) law of the

indistinguishable individuals in the stochastic population X
at time t, which, by definition, have never been observed.

A. Initialisation

At time t = 0, no observation has been made available yet
so that no individual can be distinguished. Thus, the measure
γ0 ∈M(X) representing the initial state of the distinguishable
individuals is set to γ0 = 0.

B. Prediction

Let γ̂t ∈ M(X) be the measure representing the state of
the distinguishable individuals at time t, defined as

γ̂t =

∫
Ât(dy)p̂

(y)
t .

Since all the individuals in the population are assumed to be in-
dependent, the measure γ̂t can be predicted straightforwardly.
Let f ∈ B(Es) and let Mt,t+1 be a Markov kernel from X to
Es, then, for any y ∈ Yt,

At+1(dy)p
(y)
t+1(f) = Ât(dy)p̂

(y)
t (Mt,t+1(1Xf)),

so that
γt+1 =

∫
At+1(dy)p

(y)
t+1,

and where p̂(y)
t (Mt,t+1(1X)) can be interpreted as the proba-

bility for the hypothesis y to survive to time t+ 1.
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C. Correction

There are different ways of formulating Bayes’ theorem
for the distributions p(·)

t . The first way is to only consider the
joint probability of an hypothesis y ∈ Yt−1 together with an
observation z ∈ Zt. When G(x) = gt(z, x) is a (bounded
positive) likelihood function on E′s ×Es, Bayes’ theorem can
be expressed by using (1), with f ∈ B(X), as

p̂
(y,z)
t (f) =

p
(y)
t (f gt(z, ·))
p

(y)
t (gt(z, ·))

= Ψgt(z,·)(p
(y)
t )(f). (8)

Although (8) provides the corrected distribution p̂(y,z)
t , it does

not assess the probability for y and z to be actually associated.
Estimating this probability requires the full population to be
involved, as demonstrated in the following theorem.

Theorem 2: Let n̄ be the number of indistinguishable
individuals. For a specific observation z ∈ Zt, the probability
of the association between y and z, for any y ∈ Y s

t−1, is

p̂
(y,z)
t,z = ay q̂

(y,z)
t,z =

ayp
(y)
t

(
ĝt(z, ·)

)
w(y, z, n̄)∫

As
t(dy

′)p
(y′)
t (gt(z, ·))w(y′, z, n̄)

, (9)

where ĝt(z, ·) = 1X gt(z, ·) discards the false alarm term and
where w also depends on At and Zt. For a given y ∈ Yt−1

and any z ∈ Zs
t , the probability of associating y and z is

p̂
(y,z)
t,y = ay q̂

(y,z)
t,y =

ayp
(y)
t (gt(z, ·))w(y, z, n̄)∫

Zs
t (dz

′)p
(y)
t (gt(z′, ·))w(y, z′, n̄)

.

(10)
The term w(y, z, n̄) is interpreted as the joint probability of
all the hypotheses except y and all the observations except z.

Proof: Using the result and notations of Theorem 1 with
subsets in E⊗ns indexed by y ∈ Yt−1, so that n = |Yt−1|, and
subsets in E ′⊗ks indexed by z ∈ Zt, so that k = |Zt|, we see
that the global data association problem can be rewritten in
different ways: either, for any z ∈ Zt, as

T�(B/.) =
⋃

y∈Yt−1

(By ×Bz)× T ∗�
(
X \By, X ′ \Bz, n̄

)
∪ (Es ×Bz)× T ∗�

(
X,X ′ \Bz, n̄− 1

)
, (11)

or, for any y ∈ Yt−1, as

T�(B/.) =
⋃
z∈Zt

(By ×Bz)× T ∗�
(
X \By, X ′ \Bz, n̄

)
∪ (By × φ′s)× T ∗�

(
X \By, X ′, n̄

)
. (12)

Setting By = Es for any y ∈ Yt−1, we define:

w(y, z, n̄) = p
(·)
�
(
T ∗� (X \By, X ′ \Bz, n̄)

)
,

w(ys,t−1, z, n̄) = p
(·)
�
(
T ∗� (X,X ′ \Bz, n̄− 1)

)
,

w(y, φ′s, n̄) = p
(·)
�
(
T ∗� (X \By, X ′, n̄)

)
,

where p
(·)
� are projections of p�. Then, denoting p

(y,z)
� the

projection of p� on By × Bz and assuming that p(y,z)
� (By, ·)

is absolutely continuous w.r.t. a reference measure in E′s, we
write p

(y,z)
� (By, z) = ayp

(y)
t (gt(z, ·)). Thus (9) (resp. (10))

follows from Bayes’ theorem with one element of the union
(11) (resp. (12)) as numerator and the union as denominator.

Based on the result of Theorem 2, the corrected association
measure Ât can be expressed in two different ways:

Ât(d(y, z)) = As
t(dy)Zt(dz)q̂(y,z)

t,z +At(dy)δφ′s(dz)q̂
(y,z)
t,y ,

= At(dy)Zs
t (dz)q̂

(y,z)
t,y + δys,t−1

(dy)Zt(dz)p̂(y,z)
t,z .

The corrected measure γ̂t ∈ M(X), representing the
population state, can then be expressed as

γ̂t =

∫
Ât(dy)p̂

(y)
t =

∫
Ât(d(y, z))Ψĝt(z,·)(p

(y)
t ). (13)

Note that, unlike the PHD filter [2], the corrected measure
γ̂t cannot be expressed in terms of the predicted measure γt
only, because of the dependence of w on y. It has to be
underlined that the approach presented here does not involve
strong approximations on the predicted law of the population,
such as Poisson i.i.d., but only assumes that objects are sta-
tistically independent and that no more than one measurement
is originated from each of them. However, the complexity of
the terms w(y, z, n̄) makes (9) and (10) difficult to compute.
Therefore, to use this approach in practice, one has to find
an approximation for these terms. An accurate approximation
will give an accurate filter but will be computationally intensive
while a stronger approximation can alleviate the computational
cost. Another useful aspect of (10) is that the probability for an
hypothesis to be missed-detected can also be updated through
Bayes’ theorem, giving an a posteriori probability of missed-
detection.

IV. CONCLUSION

The concept of distinguishability in the representation of a
stochastic population has been proved useful to the derivation
of a data association scheme for independent individuals. This
approach has been used in practice to define an association
measure for the estimation of independent stochastic popula-
tions. It has been demonstrated that this association measure
can be expressed in two different ways, thus offering a choice
in the representation of the association for future exploitation.
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