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Abstract—Seismic interferometry (SI) is a technique used
to estimate the Green’s function (GF) between two receivers,
as if there were a source at one of the receiver locations.
The GF obtained in this way, the interferometric GF (IGF), is
estimated here by crosscorrelating the signals from two receivers
for many sources and averaging these crosscorrelations over
sources. However, in many applications, the conditions needed
to recover the exact GF are not met and thus the estimated IGF
is inaccurate. For such cases, we improve the IGF by summing
lower-rank approximations of the crosscorrelations obtained via
the Singular Value Decomposition (SVD), instead of averaging the
original crosscorrelations. SVD allows us to enhance low-rank,
coherent signals; these are the signals needed to reconstruct the
GF. We apply this method to a field dataset where seismic signals
from active sources are transformed to simulate passive seismic
recordings. In this data set we find that filtering with SVD allows
for IGF recovery in cases where standard SI does not.

I. INTRODUCTION

Seismic interferometry (SI), first suggested by [1], can
be used to estimate the Green’s function (GF) between two
receivers, as if there were a source at one of the receiver
locations, by crosscorrelating the seismic signals recorded at
the two receivers and summing these crosscorrelations over
many sources. The sources can be deterministic (e.g., [2]) or
uncorrelated noise (e.g., [3]). A recent tutorial on the basic
principles, theory, and a few examples can be found in [4].

To accurately construct the IGF requires that the receivers
be surrounded by a closed surface of sources. It is generally
accepted that the sources located on or near rays that pass
through both receivers give the primary contribution to the
IGF [5]. As this result is derived by approximating the inter-
ferometric integral (or summation in the discrete case) with the
method of stationary phase, we call these sources stationary
sources, and those outside this zone non-stationary sources.
When the source coverage is incomplete, the crosscorrelations
from non-stationary sources do not cancel completely resulting
in artifacts in the final IGF. [6] provides a summary of methods
for alleviating this problem.

Our approach starts with constructing a crosscorrelogram
matrix (collection of crosscorrelated signals). The dimensions
of this matrix are time-lags (from crosscorrelations) and
sources (or time windows in the passive case). Thus, by
stacking the crosscorrelogram along the source (time window)
dimension, we obtain the IGF. We follow the suggestion in [7],
of analyzing and preprocessing the crosscorrelogram before
stacking. In the crosscorrelogram, energy from the stationary
sources (stationary energy) provide the main contribution to
the GF and energy from the non-stationary sources (non-
stationary energy) should ideally cancel. Stationary energy is
characterized by coherency, small wavenumber, and nearly in-
phase events along the source/time window dimension. Non-
stationary energy, by contrast, is characterized by incoherency,

larger wavenumber, and out-of-phase events along the source
dimension. It is by separating the stationary and non-stationary
energy, using SVD, in the crosscorrelogram that we obtain
more accurate IGFs for incomplete source distributions. This
idea of filtering stationary energy in the crosscorrelograms
using SVD is similar to the approach used in [8] to increase the
signal to noise ratio (SNR) and filter linear events. A detailed
derivation of this method and a few applications to active-
source data can be found in [9]. Here we extend the application
of this methodology to a passive-source case.

We start by discussing the methodology in the following
section. We then show a simple acoustic synthetic example
(active sources) to illustrate the SVD method, followed by an
application to a field dataset in which we simulate passive data.

II. METHOD

Here we present the main equations of SI and the SVD
method; more details can be found in [9] and references
therein. We follow the derivation of SI in [10].

Let xi for 1 ≤ i ≤ N be the location of sources, ω
the angular frequency, and Ĝ(xA,xi, ω) and Ĝ(xB ,xi, ω)
the Fourier transforms of the signal for a source located at
xi and recorded at receivers A and B, respectively. The IGF
between the receivers can be obtained by summation of the
crosscorrelated signals for all sources

Ĝ(xA,xB , ω) + Ĝ∗(xA,xB , ω) ≈
N∑
i=1

Ĝ∗(xA,xi, ω)Ĝ(xB ,xi, ω) , (1)

where Ĝ(xA,xB , ω) is the frequency-domain GF for a re-
ceiver at xA and a source at xB ; the ∗ represents complex
conjugation. In the time domain, SI recovers the sum of the
causal and acausal GF; here we will focus only on the causal
portion of the signal. The absolute amplitudes of the IGF are
lost due to simplifications made to obtain equation 1. The
phases, however, are preserved, making (1) suitable for most
applications of SI.

Now, assume there are M time samples and let τl for 1 ≤
l ≤ 2M − 1 be the time lags from crosscorrelations in the
time domain. We consider the crosscorrelogram as the matrix
C = C(xi, τl), where each row is the crosscorrelation of the
two signals (recorded at the two receivers) for each source
(for the passive field data case presented below, the sources
are replaced by time windows). Thus, the crosscorrelogram C
can be written as

C(xi, τl) =

∫
G(xA,xi, t+ τl)G(xB ,xi, t)dt , (2)
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Fig. 1. (a) singular values, σk; (b) stack coefficients, sk (the coefficient
used to construct C1 appears in red); (c) original crosscorrelogram, C; (d)
rank-1 crosscorrelogram, C1; (e) standard IGF, G; (f) IGF, G1, obtained from
C1; (g) source-receiver geometry with 13 evenly distributed sources (red stars)
around the stationary zone to the left of the receivers (blue triangles); The GFs
in (e) and (f) are similar. Even though (a) shows that there are two significant
singular values to represent C, (b) shows that G can be well represented with
only one stack coefficient.
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Fig. 2. Figures (a)-(g) are similar to those in Fig. 1. The stack coefficient
spectrum indicates two significant coefficients, 2 and 3, contributing to the
GF, however, as seen in (f), they do not resemble the GF, as expected.

where C is an N × 2M − 1 matrix. The IGF is then obtained
by stacking C over the source dimension,

G = G(xB ,xA, t) +G(xB ,xA,−t) =
∑
i

C(xi, τl) . (3)

The SVD decomposition of the crosscorrelogram is C =
UΣV t, where U and V are the left and right singular vectors,
respectively, and Σ is the diagonal matrix whose elements are
the singular values of C. Now we construct Σj by keeping j
singular values of Σ and obtain a lower-rank approximation
Cj = Cj(xi, τl) = UΣjV

t. Stacking the rows of C gives the
standard IGF, G, and stacking the rows of the approximation

Cj gives the modified IGF, Gj ,

Gj =
∑
i

Cj(xi, τl) . (4)

According to the SVD-based crosscorrelogram decompo-
sition, we note that Gj can be viewed as a weighted sum of
the left singular vectors (rows of matrix V ). Let e be a vector
of dimensions 1 ×N , whose elements are all equal to 1.

Then, the IGF can be written in matrix notation as

G = eC = eUΣV t = sV t , (5)

where s = eUΣ are the coefficients of the weighted sum
of the singular vectors in V . We refer to these coefficients as
stack coefficients. Let uik correspond to the elements of matrix
U , vk correspond to the k-th row of matrix V , and σk be the
singular values. Thus, (3) can be rewritten as

G =
∑
k

σk

(∑
i

uik

)
vk =

∑
k

skvk, 1 ≤ k ≤ N . (6)

Next we apply this method to an active-source synthetic dataset
and a field dataset with simulated passive sources.

III. SYNTHETIC ACOUSTIC EXAMPLE

We now use a synthetic acoustic homogeneous model to
illustrate the SVD-based method. Consider a medium with no
reflectors and with constant velocity and density, where the GF
consists of the direct wave only. We study three source distri-
butions: (i) stationary sources only, (ii) non-stationary sources
only, and (iii) both stationary and non-stationary sources. In
all three cases there are gaps in the source distribution and,
for comparison, all the GFs are normalized to have a peak
amplitude of one.

First, we consider the case where the sources are only in the
stationary-phase zone, as in Fig. 1(g). The energy from these
sources contributes constructively to the GF. The spectra in
Fig. 1(a)-(b) show that while there are two significant singular
values to represent C (Fig. 1(c)) only one stack coefficient,
the first one, should be required to well-approximate the GF.
Fig. 1(d) shows C1 constructed using only the first stack
coefficient. Fig. 1(e) and (f), show that the GF obtained from
C and C1 are quite similar. This is a case where standard
interferometry works well and the SVD technique is not
necessary, although it is not detrimental.

In case (ii) we take only non-stationary sources (Fig. 2(g)).
Ideally, (i.e., assuming full source coverage) all of the non-
stationary energy should cancel during the summation over
sources. However, if there are gaps in the source distribution,
residual energy will remain because of the imperfect can-
cellation of the non-stationary energy. Even though here we
cannot recover the GF, we present this case with the goal of
observing how the crosscorrelogram (as well as singular value
and stack coefficient spectrum) differs from case (i). First we
note that the crosscorrelogram in Fig. 2(c) does not contain
the nearly-in-phase energy present in Fig. 1(c). The singular
value spectrum in Fig. 2(a) shows a smooth decay, i.e., there
is no obvious truncation point of significant singular values
as seen in Fig. 1(a). We construct a rank-2 crosscorrelogram
approximation (from the strongest stack coefficient, 2 and 3),
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Fig. 3. Figures (a)-(f) are similar to those in Fig. 1. In (b) it is clear that the
IGF is well represented by the first stack coefficient. In (f) the fluctuations
are reduced and the GF is clearer than in (e).

C2, in Fig. 2(d). As expected, C2 does not enhance any
linearity and does not even resemble C, Fig. 2(c).

Case (iii) mixes the two previous cases. Fig. 3(g) shows
sources in the stationary and non-stationary zones, but with
gaps in the source coverage. The crosscorrelogram, Fig. 3(c),
thus has energy contributing to the GF and energy that should
cancel out completely; however, because of the gaps, it does
not. In the singular value spectrum, Fig. 3(a), we observe
a mixture of the two previous cases, a break after the first
singular value followed by smooth decay. Fig. 3(b) again
indicates that the IGF is well represented with only the first
singular vector. Fig. 3(d) shows C1, constructed using only the
first stacking coefficient, which corresponds to the stationary
energy. This rank-1 approximation thus suppresses the residual
energy caused by the imperfect cancellation of non-stationary
energy, and G1 is more accurate than G as seen in Fig 3(e)-(f).

Even though in this case we used deterministic sources,
similar considerations regarding stationary and non-stationary
energy can be made for the passive case, as we show in the
next example.

IV. FIELD DATASET

We now apply the SVD technique to a portion of a high-
resolution field dataset acquired in the Middle East. The full
data were obtained in a 1×1-km area covered with 1600
geophones located on a 25×25-m cell grid. Seismic vibrators
were located in a similar grid shifted with respect to the
receiver grid by half a cell (12.5 m) in both directions. The
subset of sources and receivers (448 sources and two receivers)
used in this work is shown in Fig. 4.

In the field, waves from each source were recorded sep-
arately at each receiver for 4 s; recorded signals have a
bandwidth of 725 Hz, and the signals are dominated by surface
waves. In order to simulate a passive seismic experiment for
each receiver, we first generate random activation times for
each source and then create one single long-time signal that
contains all 4 s responses of each individual source, similar to
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Fig. 4. Stars and triangles represent source and receivers locations, respec-
tively. The virtual source corresponds to the red triangle.
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Fig. 5. Figures (a)-(f) are similar to those in Fig. 1. In (f), the red line
corresponds to the reference GF (obtained using 175 time windows) and the
black line to the IGF. In (b) we see that G can be well represented with only
one stack coefficient.

what was done in [11]. The activation time of each source is
taken from a uniform distribution between zero and 1300 s,
leading to signal superpositions and a minimum delay of 0.2 s
between consecutive sources. In this way, noise records are
simulated and temporal and spatial information about sources
is lost.

We now proceed to obtain IGFs for the pair of receivers
highlighted in Fig. 4. The goal is to construct the IGFs using
different lengths of the noise signal (from 100% down to
about 28% of the signal), using both standard SI and the SVD
method, to show that the IGF can be obtained via the SVD
method in cases where standard SI fails to converge. First, the
signal at each receiver is separated into 8 s long time windows,
with a total of 175 windows.

Next, we generate a reference GF (that will be used for
keeping track of the convergence of both standard SI and the
SVD method), by estimating the IGF between the receivers
using all 175 windows. The reference GF is shown in Fig. 5(e).
The singular value spectra, Fig. 5(a), shows a smooth decay
except for the small jump from the first to the second singular
value. The stack coefficient spectra, Fig. 5(b), shows one most
significant coefficient, the first one. The rank-1 crosscorrelo-
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Fig. 6. Figures (a)-(f) are similar to those in Fig. 1. Here we use 88 time
windows to construct the IGFs. In (e) and (f), the red line corresponds to the
reference GF and the black line to the IGF. The strong residual energy (due
to uncanceled noise) makes the convergence of G be very poor. In particular,
in this case it would be very difficult to identify the surface wave. Here, even
though (b) shows that the energy in G is spread across many stack coefficients,
it still can be reasonably represented with only one.

gram, Fig. 5(d), shows the zone of strongest coherent energy
(in the vicinity of 0.2 s) in the original crosscorrelogram in
Fig. 5(c). This energy corresponds primarily to the surface
wave, as can also be seen in Fig. 5(f).

Now, we decrease the number of time windows used to
construct the IGFs. As the number of time windows decreases,
the GF obtained with SVD remains stable while the GF
obtained through standard SI deteriorates. Fig. 6 shows results
after we decrease the number of time windows by 50%. As
seen in Fig. 6(e)-(f), the convergence of the standard IGF is
poor while the GF from the SVD method remains stable.
We then further reduce the number of time windows by
approximately 43%. The results are shown in Fig. 7. Again,
while G in Fig. 7(e) converges poorly, G1 remains stable. This
illustrates how the SVD method may require fewer sources
to converge to the IGFs as compared to standard SI. Note
that crosscorrelograms from passive data should present linear
features (unlikely crosscorrelograms from deterministic data
which has a curved structure as seen, for example, in Fig.1)
indicating that the first singular vector should contain most of
the relevant information. Thus, for this field dataset, the IGFs
were constructed from rank-1 crosscorrelograms obtained by
preserving the first singular value only.

V. CONCLUSION

We have shown how using lower-rank approximations to
crosscorrelograms, obtained through SVD, is a promising ap-
proach to improve IGF estimates. The SVD approach preserves
stationary energy in the crosscorrelogram, which is the energy
that contributes most to GF recovery, and helps to attenuate the
non-stationary energy, which contributes primarily to artifacts
in the IGF. We presented a synthetic and a field data example
where this technique allows the recovery of IGFs in situations
where standard SI fails.
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Fig. 7. Figures (a)-(f) are similar to those in Fig. 1. In (e) and (f), the red
line corresponds to the reference GF and the black line to the IGF. Here we
use 50 time windows. The convergence of G is again very poor (also making
it difficult to identify the surface wave) and its energy is also spread across
many stack coefficients, but it can still be reasonably represented with only
the first coefficient.
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