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Abstract—Identifying critical components in networked sys-
tems is a key problem for many important applications in a
diverse set of fields, including epidemiology, e-commerce and
traffic systems. This paper describes the development and appli-
cation of a semi-nonnegative matrix factorization for structural
discovery featuring nodes that are important for transmission
over social networks. The technique allows the practitioner to
perform structured matrix factorization by specifying context-
specific network statistics that guide the solution. The techniques
are demonstrated on a network derived from Twitter data.

I. INTRODUCTION

Through an increased understanding of how ideas are gen-
erated and disseminated, the identification of important nodes
in social networks can improve many far ranging applications
from targeted advertisements, to stopping the spread of epi-
demics. In this work, we propose a new matrix factorization-
based approach for the discovery of path-important nodes
within potentially weighted and directed networks. This task
is different from typical community detection, which aims to
extract groups of nodes that feature relatively dense within
group connectivity and sparser between group connections. In
contrast, the goal in this article is to discover structure featuring
nodes that are important for transmission over the network.
This goal is closely related to role identification, which aims
to assign roles based on local connectivity patterns. Typically,
role analysis methods rely on analyzing ego networks (the
union of a node and its neighbors), network statistics, or graph-
coloring techniques (see [1] and references therein).

The underlying methodology in this article utilizes a low
rank approximation to an adjacency matrix to facilitate identi-
fication of important network substructure. The use of low rank
approximations to graph related matrices follows a long line
of previous works. For instance, in classical spectral layout,
the coordinates of each node are given by the Singular Value
Decomposition (SVD) of the Laplacian matrix. Recently, there
has been extensive interest in spectral clustering (see [2] and
references therein), which discovers community structure in
eigenvectors of the Laplacian matrix.

Low-rank approximations satisfying different (relaxed)
constraints than orthonormality are also popular. For instance,
in non-negative matrix factorization (NMF), decompositions
are composed of only non-negative entries. Such factorizations
have been shown to be advantageous for visualization of non-
negative data [3]. Note that non-negativity is typically satis-
fied with networks, as edges commonly correspond to flows,

capacity, or binary relationships, and hence are non-negative.
NMF solutions do not have simple expressions in terms of
eigenvectors. They can, however, be efficiently computed by
formulating the problem as one of penalized optimization,
and using modern gradient-descent algorithms. Given that our
proposed approach utilizes non-negativity on one of the matrix
factors, we utilize a similar algorithmic approach to the NMF
literature. Recently, theoretical connections between NMF and
important problems in data mining have been developed [4],
[5], and accordingly, NMF has been proposed for overlapping
community detection on static [6], [7] and dynamic [8] net-
works.

The next section introduces the matrix factorization model,
Section III provides estimation details, and Section IV illus-
trates the model on Twitter data. This article closes with a brief
discussion in Section V.

II. MODEL

Suppose we observe a graph G, with n nodes and adjacency
matrix A. We postulate the following graph Structured Semi-
NMF model

min
Λ,V≥0

||A− SΛV T ||2F , (1)

where S ∈ R
n×d,Λ ∈ R

d×K , and V ∈ R
n×K
+ .

Each column of S is equal to a network statistic (degree
of each node, betweenness, etc.). Hence, S is known and cal-
culated from the graph G before performing the factorization.
For instance, if the degree and betweenness are believed to be
important measures for the graph G, then the S matrix would
be constructed as

S =







Degree(1) Betweenness(1)
Degree(2) Betweenness(2)

... ...
Degree(n) Betweenness(n)






. (2)

The S matrix utilizes information on each node that guides
the factorization. Λ reveals the importance of each network
statistic to the K-dimensions (columns) of V . Each node’s
coordinate in lower K < n dimensional space is contained in
V and is constrained to contain values greater than or equal
to zero. The product ΛV T provide coordinates or weights for
each node that reproduce the given adjacency matrix as best
as possible when left multiplied with S.
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Enforcing non-negativity on a single matrix factor was
first proposed in [9] with the so-called semi-NMF to improve
interpretability of the resultant factorizations with data of
mixed signs. We extend semi-NMF to the network setting
by considering a structured approach that incorporates graph
geometry into the factorization through the matrix S.

III. ALGORITHMS

The estimation algorithm we present is an iterative one
that cycles between Λ and V . The update for Λ is based
on a least squares solution and derived through standard
arguments. The update for V is similar to the benchmark
algorithm for NMF, known as “multiplicative updating” [10].
It is obtained by utilizing the Karush-Kuhn-Tucker (KKT)
optimality conditions, which provide necessary conditions for
a local minimum. The derivation is omitted due to space
constraints. However, the steps are similar to those found in
previous works [9].

A. Updating Λ

Update Λ by setting

Λ = (STS)−1STAV (V TV )−1. (3)

Fixing V , the update for Λ is the optimal solution to
minΛ ||A − SΛV ||2F . This can be proven by rewriting the
objective function

O = ||A− SΛV T ||2F (4)

= Tr(A− SΛV T )T (A− SΛV T ), (5)

and computing the partial derivative

∂O

∂Λ
= −2STAV + 2(STS)ΛV TV. (6)

Setting the partial derivative equal to zero, fixing V and solving
for Λ yields the form above.

B. Updating V

As with Λ, we can work directly with the partial derivative

∂O

∂V
= −2ATSΛ + 2V ΛTSTSΛ (7)

to obtain an alternating constrained least squares algorithm that
boasts a quadratic convergence rate. The cost per iteration can
become high, since V should be solved for subject to non-
negativity using active set methods (see [11]) in

V ΛTSTSΛ = ATSΛ. (8)

Another option proposed originally for NMF by [12] is to
solve for V using the usual least squares estimator

V = ATSΛ(ΛTSTSΛ)−1, (9)

then set negative values in V to 0. The projection step heuris-
tically approximates the true, non-negative solution. Notice
the update for V T after left multiplying by Λ is ΛV T =
Λ(ΛTSTSΛ)−1ΛTSTA, the familiar form of predicted values
from weighted least squares, where the weights are given by
the S input matrix, Λ acts as the design matrix, and A is
analogous to multiple responses.

In many practical situations, it may not be known which
statistics, if any, are sufficient. Hence, one may be tempted to
include many possible network statistics for each node. Such
an approach can benefit from additional regularization in the
form of a ridge (l2) penalty to provide numerical stability. The
estimator for the approximate case becomes

V = ATSΛ(ΛTSTSΛ + λI)−1, (10)

where λ is the regularization parameter. Other penalties on V
or Λ can be investigated by utilizing results from multivariate
regression, since both updates can be written as least squares
problems. While easy to implement, theoretical properties are
difficult to obtain due to the projection step.

A third option that is relatively simple to implement and
solves for V subject to non-negativity constraints is multi-
plicative updating. This popular approach has been shown to
converge slowly due to its linear rate [13]. However, in practice
we find that after a handful of iterations, the algorithm results
in meaningful factorizations.

We develop the update by introducing the Lagrangian

L(V ) = Tr(A− SΛV T )T (A− SΛV T )− βV, (11)

where β is the Lagrange multiplier enforcing non-negativity.
The KKT optimality condition is obtained by setting

∂L

∂V
= −2ATSΛ + 2V ΛTSTSΛ− β = 0. (12)

Then the KKT complimentary slackness condition yields

(−2ATSΛ + 2V ΛTSTSΛ)ijVij = βijVij = 0. (13)

Separate the positive and negative parts of a matrix X as
X+

ij = (|Xij |+Xij)/2 and X−
ij = (|Xij | −Xij)/2. Then the

following update satisfies fixed point Equation 13

Vij = Vij

√

√

√

√

(ATSΛ)+ij + (V ΛTSTSΛ)−ij

(ATSΛ)−ij + (V ΛTSTSΛ)+ij
. (14)

A theoretical property of Equation 14 is that it is non-
increasing with respect to the objective function. Details prov-
ing this property can be found in [9].

IV. UK PARLIAMENT TWITTER NETWORK

We analyze a Twitter network of 419 Members of Parlia-
ment (MPs) in the United Kingdom. The raw data, collected
and processed by the authors in [14], consists of approximately
540,000 tweets, 3,000 user lists, and 27,000 follower links
within the set of 419 MPs from late 2012. The different aspects
of Twitter data are integrated using the techniques in [14] to
produce a single unified graph, shown in Fig. 1(a), that we
analyze.

The network features strong community structure, corre-
sponding to different political affiliations of the MPs. As such,
community detection methods, such as spectral clustering [2],
classical and Semi-NMF [6], [7]), recover the true structure
fairly well with the exception of the Labour party, as seen in
Fig. 1(b,c). Both approaches tend to split the Labour party into
sub-groups corresponding to known intraparty divisions1.

1See http://blogs.telegraph.co.uk/news/danhodges/100134777/
the-division-of-labour-todays-party-hasnt-got-a-clue-where-its-going/
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(a) Observed Network (b) Spectral Clustering (c) Semi-NMF

Fig. 1. Subfigure (a) shows the network of UK Members of Parliament, with color and vertex shapes denoting party affiliation. Subfigures (b) and (c) display
typical results of applying spectral clustering and Semi-NMF to the UK-MP Twitter network. Both algorithms recover well the true political party structure.

These community detection methods can help guide other
approaches for finding path important MPs. For instance, a
practitioner could first discover communities, then search for
interesting network statistic profiles. We present in Fig. 2(b)
the subgraph of highest degree MPs within each party. Fig. 2(c)
shows the subgraph of MPs within each party with the largest
magnitude in the first principal component of clustering co-
efficient, betweenness, and closeness. These three network
statistics measure different aspects of local geometry and
shortest path properties. In both subfigures, we see isolated
nodes and disconnected communities. We also note that both of
these direct approaches utilize the true community membership
to illustrate the most opportunistic set of results.

The Structured Semi-NMF does not utilize party affilia-
tions, yet results in more interpretable subgraphs. Shown in
Fig. 2(a), there are no isolated nodes, links within each com-
munity are more dense, and connections between communities
exist. Statistics measuring connectedness in Table I indicate
that the proposed approach performs best. It has the least
fragmentation, the largest connected subgraph, and highest
clustering coefficient.

The nodes comprising the subgraph are chosen by
keeping the group with largest mean after applying K-
Means (K = 2) on V , with rank(V ) = 2 and S =
[Clustering Coef.,Betweenness, Closeness]. Results are similar
for other V ranks. There are a number of guidelines we con-
sider when choosing parameters for the proposed factorization.
First, due to the weight matrix S, the product SΛV T can be at
most rank(S), which is equal to three and not large in general.
Accordingly, as shown in Fig. 3, there is little improvement
in explained variance for additional dimensions in V after
three. Second, the variables in S are chosen to be path-related
and not direct functions of eigenvectors. As a consequence,
the factorization features higher error compared to classical
NMF. The benefit of the Structured Semi-NMF is that network
structure featuring path important MPs are highlighted instead
of party affiliations.

V. CONCLUSION

The graph Structured Semi-NMF method appears to out-
perform competing approaches that either utilize network

TABLE I. NETWORK STATISTICS OF THE DIFFERENT SUBGRAPHS

SHOWN IN FIG. 2. NUMBER COMPONENTS REFERS TO THE NUMBER OF

STRONGLY CONNECTED COMPONENTS, LSCC REFERS TO THE

PROPORTION OF NODES IN THE LARGEST STRONGLY CONNECTED

COMPONENT.

Number Components LSCC Clustering Coefficient

Structured Semi-NMF 3 0.59 0.66

Highest Degree 4 0.45 0.48

Largest Path 9 0.45 0.55

Random 28 0.24 0.09
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Fig. 3. Percentage of variance explained (1− ||A− Â||2
F
/||A||)F 2) of the

graph Structured Semi-NMF and that of classical NMF for the UK Parliament
Twitter Network.

statistics only or exclude S in matrix factorization for iden-
tification of transmission substructure. The extra flexibility
of semi-NMF along with carefully chosen network statistics
steer the factorization towards highly interpretable solutions.
Moreover, the factorization can be extended by constructing S
from potentially available meta data, thus providing a way to
combine network data with additional vertex features.

A weakness of the approach is illustrated in situations
when it is unclear which network statistics, if any, are the
right ones. The usefulness of graph Structured Semi-NMF
depends upon the practitioner choosing appropriate, context-
specific statistics. When the S matrix is high dimensional,
the additional regularization discussed briefly above for the
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(a) Structured Semi-NMF subgraph
(unsupervised)

(b) Highest degree nodes within each party
(supervised)
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(c) Largest path statistic nodes within each party
(supervised)

(d) Random party subgraphs
(supervised)

Fig. 2. Subfigure (a) shows the subgraph after applying K-Means to V from Structured Semi-NMF. Node sizes proportional to their norm in V , which is of
rank 2. Subfigures (b),(c) and (d) shows the subgraph of nodes according to different node selection schemes that condition on the true party affiliations of the
MPs.

alternating least squares algorithms should be further studied.
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