
Sparse Iterative Adaptive Approach with
Application to Source Localization

William Rowe and Jian Li
Department of Electrical and Computer Engineering

University of Florida
Gainesville, FL 32611, USA
Email: wrowe001@ufl.edu

Petre Stoica
Department of Information Technology

Division of Systems and Control
Uppsala University
Uppsala, Sweden

Abstract—The iterative adaptive approach (IAA) is a spectral
estimation algorithm that provides high resolution estimates with
as little as a single snapshot. However, IAA is not a sparsity
promoting algorithm which might be desirable in specific appli-
cations. In this work, we present two approaches for producing
sparse IAA estimates. We examine the performance using a
source localization example.

I. INTRODUCTION

The estimation of the direction of arrival (DOA) of a plane
wave impinging on an array is one of the classical array
processing problems. There are many different estimation
methods available for this specific problem such as delay-
and-sum, Capon’s method, or multiple signal classification
(MUSIC) [1], [2]. The delay-and-sum method suffers from
poor resolution, but can be used with a single snapshot.
Capon’s method and MUSIC require a good estimate of the
array covariance matrix, which requires multiple snapshots
[2]. When only a single snapshot is available a spectral
estimation algorithm called the Iterative Adaptive Approach
(IAA) can provide high resolution estimates [3] (IAA does
require gridding of the parameter space while MUSIC does
not).

IAA is an iterative method based on a weighted least
squares approach that is non-parametric and user parameter
free. It typically returns a dense estimate of the impinging
signal power spectrum. Here we define a dense vector to
be one where the majority of the elements are non-zero and
conversely a sparse vector to be one where the majority of the
elements are zero. Sparsity promoting algorithm such as Basis
Pursuit (BP) or Sparse Bayesian Learning (SBL) have been of
significant interest, but these algorithms commonly contain a
user parameter that must be tuned carefully [3].

In this work we explore two methods of altering the IAA
algorithm to output a sparse vector instead of a dense vector.
The first method is a hard threshold detector based on the for-
mulation of IAA. The second approach is a soft thresholding
approach which modifies the IAA algorithm. Both methods are
able to output sparse vectors while maintaining the robustness
of the IAA algorithm.

We begin our discussion with a brief review of the IAA
algorithm and the core implementation. We then present the
hard thresholding and soft thresholding methods for the IAA

algorithm. We follow this with a numerical simulation and
comparison to orthogonal matching pursuit (OMP). We then
conclude this work with a brief summary and final thoughts.

In this work a vector will be denoted by a bold face lower
case letter x and a matrix will be represented by a bold face
upper case letter X. The diag(·) operator maps a vector to
the diagonal elements of a square matrix and also maps the
diagonal elements of a square matrix to a vector in the opposite
case. (·)H represents a conjugate transpose operation for a
vector or matrix.

II. IAA

The Iterative Adaptive Approach is a spectral estimation
technique that is based on a weighted least squares min-
imization. The method was originally proposed for source
localization, but has found other applications in imaging,
pulse compression, and missing data estimation [3], [4]. IAA
assumes that the following general signal model is valid for
the data:

y = Aα+ e. (1)

Here y ∈ CN×1 is our measured data vector, and A =
[a(θ1),a(θ2), . . . ,a(θK)] is our steering matrix. Here K rep-
resents the grid size in the frequency domain and a steering
vector of A can be written as

a(θk) = [e−j(2πf/c)x1 sin(θk), . . . , e−j(2πf/c)xN sin(θk)]T .

Here f represents the carrier wave frequency, c is the speed
of propagation, and xn is the position of the nth element.
α = [α1, α2, . . . , αK ]T is a vector containing the unknown
amplitude and phase at each point in the frequency domain;
finally, e ∈ CN×1 is the noise vector.

We are interested in measuring the signal power pk = |αk|2
for k = 1, 2, . . . ,K. The signal power matrix P is defined as
a diagonal K ×K matrix with the pk values on the diagonal.
Using pk then the noise and interference covariance matrix for
the kth grid point can be defined as

Qk = R− pkakaHk , (2)

where R , APAH . IAA minimizes the following function
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with respect to the αk values:

K∑
k=1

||y − αkak||2Q−1
k

, (3)

where ||x||2
Q−1

k

= xHQ−1k x. This is a complicated cost
function since the Qk depends on the αk values. Also notice
that the problem decouples for each αk, hence each αk can
be solved separately for a given Qk. Therefore, IAA takes an
iterative approach to solve this problem.

We start with some initial estimate of α̂ (typically from
a matched filter/delay-and-sum). Then P̂ = diag(|α̂|2) and
R̂ = AP̂AH . The optimal solution then for a given Q̂−1k is

α̂k =
aHk Q̂−1k y

aHk Q̂−1k ak
=

aHk R̂−1y

aHk R̂−1ak
. (4)

The equivalence in (4) can be shown using (2) and the
matrix inversion lemma [3]. Using this estimate of α then the
matrix P̂ is updated and the process is repeated until some
stopping criterion is met. For a more in-depth treatment on
the derivation of IAA the reader is encouraged to read [3]. We
present the generic IAA algorithm in Table I. Here a subscript
of (i) represents an iteration marker and ε is the threshold of
our convergence criterion. When ε is small then α(i) ≈ α(i−1)
(where α0 is our initialization value) and we say that IAA
has converged, while β is an iteration threshold which sets a
maximum number of iterations. In this paper we choose ε to
be 10−3 and β = 20. For the basic implementation described
in this section, we choose wk to be 0 for all k.

III. SPARSE IAA

Our main focus in this work is to consider how to promote
sparsity in the IAA estimate. We will consider two methods
to do that. The first method we consider is a hard thresholding
that is applied to the IAA output. The second approach uses a
soft thresholding and a modification to the IAA cost function.

A. Hard Thresholding

Consider the scenario where IAA has converged which
implies that α(i) ≈ α(i−1). Then we assume that IAA has
minimized (3). Since Q̂k has converged to a stable value
the residuals in (3) are whitened. Then for each grid point
k, we have a white Gaussian noise (WGN) detector prob-
lem with unknown variance (σ̂2

k) where our measurement is
ỹ = Q̂

−1/2
k y and our whitened noise and interference is

w̃ = Q̂
−1/2
k (

∑K
j=1,j 6=k αjaj + e). We can use a generalized

likelihood ratio test (GLRT) to determine a threshold for
deciding between H0 : ỹ = w̃ and H1 : ỹ = Q̂

−1/2
k α̂kak+w̃.

The GLRT test for this problem is given by

γ
H0

≷
H1

||y||2
Q̂−1

k

||y − α̂kak||2Q̂−1
k

,

0
H1

≷
H0

T (y, k),

where

T (y, k) = γ||y − α̂kak||2Q̂−1
k

− ||y||2
Q̂−1

k

. (5)

As the GLRT detector for a WGN detector with known
amplitude and unknown variance is not a constant false alarm
rate detector [5], we choose γ = 1 + ρ

M where M is the
number of real valued measurements in y. This selection of
γ is motivated by the general information criterion (GIC)
in model order selection which for the sinusoidal estimation
problem is of the form:

ln σ̂2 +
ρν

M
≈ ln

(
σ̂2(1 +

ρν

M
)
)
, (6)

when M � ρν [6] where ν corresponds to the model order.
Selection of ρ = 2 is motivated by the Akaike Information
Criteria (AIC) and selection of ρ = lnM is motived by the
Bayesian Information Criteria (BIC) [6]. We set ν = 1 because
at each test point k, there is only one real valued parameter
under test (σ̂2

k).
This detector though would be quite computationally expen-

sive since it utilizes the inverse of each Q̂k. We can reduce
this to only requiring the inverse of R̂, which would be pre-
calculated from the last iteration of IAA. To show this note
that

||y − α̂kak||2Q̂−1
k

= yHQ̂−1k y −
|aHk Q̂−1k y|2

aHk Q̂−1k ak
,

and that

Q̂−1k = R̂−1 +
R̂−1aka

H
k R̂−1|αk|2

1− |αk|2aHk R̂−1ak

= R̂−1 +
R̂−1aka

H
k R̂−1|αk|2

µk
. (7)

Here we have defined µk = 1−|αk|2aHk R̂−1ak. Then we can
write

||y − α̂kak||2Q−1
k

= yHR̂−1y +
|α̂k|2|aHk R̂−1y|2

µk

− |a
H
k R̂−1y|2

µkaHk R̂−1ak
.

Our GLRT test function T (y, k) then becomes

T (y, k) =
ρ

M
yHR̂−1y +

ρ

M

|α̂k|2|aHk R̂−1y|2

µk

−(1 + ρ

M
)
|aHk R̂−1y|2

µkaHk R̂−1ak
,

=
ρ

M
yHR̂−1y − (1 +

ρ

M
)
|aHk R̂−1y|2

aHk R̂−1ak
κ, (8)

where κ = 1
µk

(1 − ρ
ρ+M |α̂k|

2aHk R̂−1ak). Equation (8) is a
more computationally efficient version of (5), since it reuses
R̂−1. Our hard threshold detector has the following form:{

α̂k = 0 if T (y, k) ≥ 0,
α̂k = α̂k if T (y, k) < 0.
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B. Soft Thresholding

IAA iteratively minimizes (3), which includes no penalty
on |αk|2 to help induce a sparse result. For this reason we
consider the following modified cost function

K∑
k=1

||y − αkak||2Q−1
k

+

K∑
k=1

wk|αk|2. (9)

This problem decouples for k = 1, 2, . . . ,K for a given Qk.
Then for a given k we seek to minimize with respect to αk

||y − αkak||2Q−1
k

+ wk|αk|2, wk ≥ 0. (10)

We choose wk to mimic the GIC such that

wk =
||y − α̂kak||2Q̂−1

k

M |α̂k|2
, (11)

where α̂k is the most recent estimate of αk. This mimics GIC
because when the α̂k ≈ αk then (10) becomes

||y − α̂kak||2Q̂−1
k

(1 +
1

M
) = σ̂2(1 +

1

M
), (12)

which resembles (6) when ν = 1 and ρ = 1.
The solution to (10) is

αk =
aHk Q−1k y

aHk Q−1k ak + wk
. (13)

Just as in IAA the values of Qk depend on the αk so we use
the same iterative approach to solve this problem by replacing
Qk with Q̂k. We also want to remove the usage of the Q̂k

term and rely only on R̂. Using the same substitution as (7)
the solution can be rewritten as

α̂k =
aHk R̂−1y

aHk R̂−1ak + wkµk
. (14)

We note that wk can also be re-written in terms of R̂ by

wk =
1

M |α̂k|2

(
yHR̂−1y

−|a
H
k R̂−1y|2

aHk R−1ak

(
1− |α̂k|2aHk R̂−1ak

µk

))
. (15)

The IAA algorithm is then modified to use (14) instead of the
original α̂k update formula.

This method produces sparse results, but it is sensitive to
grid size selection. If the K is chosen to be too large then the
output is biased downward significantly. Using a grid size ap-
proximately 10 times finer than the expect resolution provides
adequate results in our empirical results. Furthermore, the wk
term includes the value of α̂k in the denominator which may
result in computational problems in implementation when a α̂k
goes to zero. Therefore, if the wk takes on a NaN value due to
a division by zero, then α̂k is replaced with zero. Furthermore,
since many α̂k go to zero, R̂ can become ill-conditioned. If
the condition number of R̂ approaches machine epsilon, then
we terminate the algorithm and use the last estimate of α̂.

TABLE I: IAA

Step 0 - Initialize: Calculate α(0) = AHy. and set i = 1.
Step 1: Calculate P(i) = diag(α(i−1)) and R = AP(i)A

H .
Step 2: Calculate wk using (15).

Step 3: Calculate αk,(i) =
aH
k R−1

(i)
y

aH
k

R−1
(i)

ak+wkµk
.

Step 4: If ||α(i) −α(i−1)||22 < ε or i ≥ β, then quit.
Otherwise i = i+ 1 and go to step 1.

IV. EXAMPLES

We will examine the performance of the methods using
a plane wave source localization example. We assume we
have a 12 element uniform linear array with λ/2 spacing
where λ is the wavelength. We will estimate the DOA using 4
different sparse methods, the first being orthogonal matching
pursuit (OMP) [7] where we have set the stopping threshold to
0.01. The second and third methods are the hard thresholding
methods of IAA which we refer to as IAA-AIC and IAA-
BIC respectively. The fourth method is the soft thresholding
method IAA which we refer to as IAA-Soft. In our simula-
tion, there are three incoming waves at −25, 20, 30 degrees
respectively and all have an amplitude of 1. The phase of
each wave is randomly distributed between 0 and 2π. We
include additive circularly symmetric complex Gaussian noise
to distort our signal. The steering matrix A was chosen such
that each column corresponding to the integer direction of
arrivals from −89 to 90 degrees (180 grid points).

Fig. 1 shows the target locations, the standard delay-and-
sum estimate, the clairvoyant Capon estimate (this estimate is
made using the true noise and interference covariance matrix),
and the IAA estimate for only one snapshot when the signal-
to-noise ratio (SNR) is 20 dB. The delay-and-sum method in
this example is unable to resolve the two close point sources
while IAA is similar to the clairvoyant Capon estimate. Fig. 1
also contains the sparse estimates for the IAA-AIC and IAA-
BIC estimates. IAA-BIC is a more strict threshold and is more
sparse than the AIC threshold which can be seen in Fig. 1. Fig.
2 shows the IAA-Soft and OMP results for the same data as
Fig. 1 as well as the dense estimates for reference. OMP split
the peaks at 20 and 30 degrees, which resembles the delay-
and-sum peak, while the IAA-Soft correctly estimate the two
sources.

We ran this simulation 1000 times at each specified SNR.
The SNR was varied from 5 dB to 30 dB in steps of 2.5
dB. We chose to measure the performance via probability of
detection and power estimation error. We declare a detection
if energy is detected at grid points within 2 degrees of the
true target locations. For example, the target at 20 would be
declared detected if we detect energy at 18, 19, 20, 21, or 22
degrees. The maximum energy in each region is used as our
power estimate. The absolute error squared of the power is
measured for each target as well. The error term is averaged
to determine the mean square error (MSE) for the power
estimates at each SNR value. IAA converged on average in
10.2 iterations and IAA-Soft converged in 14.78 iterations.
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Fig. 1: Angular Power Estimates (IAA-AIC, IAA-BIC)

Fig. 2: Angular Power Estimates (OMP, IAA-Soft)

IAA-Soft exited from iterations due to an ill-conditioned R̂
(on approximately iteration 13) in 49 of the 11,000 trials.

Fig. 3 shows the measured probabilities of detection. IAA-
AIC and IAA-BIC offer higher detection rates compared to the
IAA-Soft and OMP results. OMP is most likely suffering here
due to the closely spaced sources at 20 and 30 degrees and
the single snapshot. In Fig. 4 it can be seen that OMP offers
a better MSE of the power estimate than IAA-Soft, but offers
slightly worse performance than IAA-AIC and IAA-BIC. IAA-
Soft provides sparse results, but tends to be biased downwards
which results in a larger MSE in the power estimation. IAA-
BIC provides the sparsest results while maintain good MSE
and detection performance.

Fig. 3: Probability of Detection

Fig. 4: MSE of Power Estimate (dB)

V. CONCLUSIONS

In this work we have reviewed IAA and presented three
methods of altering IAA to promote sparsity. From our empir-
ical results IAA-BIC provides the best level of sparsity while
maintaining a high detection rate, good sparsity level, and
low MSE of the power estimates. The method performs well
with a single snapshot of data. The methods were compared
to orthogonal matching pursuit as a reference for measuring
performance.
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