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Abstract—A hierarchical access setup is considered, where sec-
ondary users can (re-)use frequency bands allocated to licensed
systems, provided ongoing primary communications are not
overly disrupted. Since conventional spectrum sensing schemes
can detect and localize “active” sources but not “passive” users,
the number of primary receivers and their locations are generally
unknown. Supposing a minimal coordination between primary
and secondary systems, a novel method for unveiling areas where
primary receivers are located is proposed in this paper. The
primary system broadcasts short messages - here refereed to as
“interference tweets” - indicating the number of receivers that
are interfered. Using these tweets, together with a grid-based
discretization of the primary coverage region, the locations where
receivers are likely to reside are obtained by solving a sparse
linear regression problem. Subsequently, the estimated locations
are used to optimize resource allocation of the secondary network
operation under interference constraints.

Index Terms—Cognitive radios, underlay access, receiver lo-
calization, sparsity.

I. INTRODUCTION

Cognitive radio (CR) technologies hold significant potential

to address spectrum scarcity for wireless networks, which

is primarily due to rigid and exclusive spectrum licensing

policies. Using sophisticated sensing and resource allocation

(RA) techniques, secondary users (SUs) can (re-)use spectral

resources allocated to licensed systems, provided no disruptive

interference is caused (or inflicted) to primary users (PUs) [1].

As in conventional wireless setups, acquiring the (statistics

of) SU-to-PU channel gains is key for protecting PUs from

co-channel interference [2]–[4]. However, since PUs have

generally no incentive to use spectral resources to exchange

channel training signals with SUs [1], training-based channel

estimation cannot be employed to estimate the SU-to-PU

channels. Furthermore, since conventional spectrum sensing

techniques can detect and localize active PU sources, but not

passive users, even the locations of PU receivers are generally

unknown. Uncertainty in the PU receiver locations translates

here into imperfect knowledge of the channel distributions.

A novel method for unveiling areas where PU receivers

are located is proposed in this paper, based on a minimal

information exchange between PU and SU systems. Specif-

ically, it is assumed that the PU system broadcasts short

messages – referred to as interference tweets – to indicate the

number of interfered PUs. Although most existing CR sensing
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approaches assume no collaboration from the PUs [1], it has

been demonstrated that this minimal SU-PU interaction can

yield major improvements in spectrum (re)use efficiency [5].

The interference tweets are exploited to estimate the average

rate of interference per SU. With these quantities, and upon

employing a grid to discretize the primary coverage region, the

localization task is cast as a sparse linear regression problem,

where the vector of unknowns collects the probabilities of a

PU receiver being located at a grid point. A similar setup was

recently considered in [5], where a Bayesian estimator was

used to estimate the receiver locations. Compared to [5], the

information carried by the tweet is different, and the number

of PU receivers is not known a priori. Since the optimum

Bayesian recursive estimator designed in [5] is not tractable

for the present setup, developing low-complexity receiver-map

estimators is well motivated.

The effectiveness of the proposed PU receiver localization

scheme is assessed for an underlay CR network where SU

transmissions are scheduled based on i) SU-to-SU instanta-

neous channels; ii) the received interference tweets; and, iii)

the PU receiver map obtained through the proposed localiza-

tion method.1

II. PRELIMINARIES AND SYSTEM MODEL

Consider a secondary network with M nodes {Um}Mm=1

deployed over an area A ⊂ R
2, and assume that SUs share

a flat-fading frequency channel with an incumbent PU system

in an underlay setup [1]. Based on the output of the spectrum

sensing stage, SUs implement adaptive RA to maximize net-

work performance, while protecting the PUs from excessive

interference; see e.g., [2]–[5]. Secondary transmissions are

assumed orthogonal, and a binary scheduling variable wm(t)
is used to indicate whether SU Um is scheduled to transmit at

time t (wm(t) = 1), or not (wm(t) = 0). If active at time t, SU
Um loads a power pm(t), which, for simplicity, is constrained
to belong to a finite set Pm := {plm}Ll=1 (discrete modes).

Suppose that PU transmitters communicate with Q PU

receivers geolocated at {xq ∈ A}Qq=1, and let hm,xq denote

the instantaneous channel gain between Um and position

xq . Fading processes {hm,xq} are mutually independent, and

1Notation: (·)T stands for transposition; Eg[·] denotes expectation with
respect to the random process g; Pr{A} the probability of event A; x∗ the
optimal value of x; I{·} the indicator function (I{x} = 1 if x is true, and

zero otherwise); and, [x]ba the projection of the scalar x onto [a, b]; that is,
[x]ba := min{max{x, a}, b}.
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their distributions are assumed known to the SU network.

Thus, given the maximum instantaneous interference power

I tolerable by the PUs, the secondary network can determine

the interference probabilities at each location xq . In case of

Rayleigh fading, one has that Pr{pm(t)hm,xq > I|wm(t) =
1} = e−I/(p(t)γm,xq ), where γm,xq := Eh[hm,xq ] is the

average path loss between Um and PU receiver q.

Let zqx be a binary variable indicating whether PU receiver

q is located at x ∈ A, and consider discretizing the PU

coverage region to obtain a set ofG (possibly regularly spaced)

grid points at known locations G := {gi}Gi=1 [5]. Clearly, if

variables {zqx} were known, and PU q was located at one

of the grid points, the probability of SU Um interfering PU

receiver q would be
∑G

i=1 e
−I/(pm(t)γm,gi

)zqgi
. To account for

uncertain locations, the probabilities (beliefs) Pr{zqgi
= 1} are

considered. Those will be also referred to as receiver maps.

Moreover, to account for the PU receiver’s presence off the

preselected grid points a “spill over” region collecting grid

points around the actual location of PU q [6] is introduced.

With G(r) denoting the grid points in this spill over region,

it readily follows that Pr{zqgi
= 1} ≥ 0 for gi ∈ G(r),

and Pr{zqgi
= 1} = 0 otherwise [6]. Using these notational

conventions, we proceed to formulate our linear observation

model. With iq denoting a binary variable taking the value 1
if PU receiver q is interfered, and supposing that SU Um is

scheduled to transmit with power pm(t) = plm, define the coef-

ficient φm,l,gi
:= e

− I

plmγm,gi . Then, the probability of interfer-

ing PU receiver q is y
q
m,l := Pr{iq = 1|wm(t) = 1, pm(t) =

plm} =
∑G

i=1 φm,l,gi
Pr{zqgi

= 1}. Upon marginalizing the

transmit power, let us define yqm := Pr{iq = 1|wm(t) = 1}
and, summing across PUs, ym :=

∑

q y
q
m. The former can be

viewed as the long-term probability of SU m interfering PU

q, while the latter can be viewed as the average number of

PUs the SU m interferes. Considering now the coefficients

φm,gi
:=

∑

p∈Pm
φm,l,gi

Pr{pm = p}, variables ym can

be written as a function of the beliefs via the linear model

ym =
∑G

i=1

∑Q
q=1 φm,gi

Pr{zqgi
= 1}.

The next section will leverage the linear relationship and

the values (estimates) of ym and φm,gi
to obtain the receiver

maps. A simple alternative to acquire φm,gi
, is to run the

following online averaging

φ̂m,gi
(t) :=

(

t
∑

τ=1

wm(τ)

)−1 t
∑

τ=1

wm(τ)e
− I

pm(τ)γm,gi . (1)

Similarly, the value of ym can be acquired by averaging the

interference tweets (details will be given in the next section).

In both cases, an exponentially weighted moving average

(EWMA) strategy could be employed to track slow time-

varying channel and power statistics.

III. SPARSITY-AWARE RECEIVER LOCALIZATION

The objective is to develop an estimator for the receiver

maps (beliefs), based on a minimal interplay between PU and

SU systems. Towards this end, the grid G will be partitioned

into R clusters {G(r)}Rr=1, satisfying the following conditions:

i)
⋃R

r=1 G
(r) = G; and, ii) G(r)

⋂

G(s) = ∅ for all r 6= s. Two

main assumptions are considered for designing the estimator:

(as1) At each time instant t, the PU system broadcasts the

message o(t) ∈ N\{0} indicating the number of PU receivers

that were interfered (if any).

Different from [5], neither the number of PUs nor the specific

PU receivers that were interfered are assumed known.

(as2) At most one PU receiver is located within area G(r).

In practice, (as2) can be easily satisfied by selecting a dense

grid, and sufficiently small clusters {G(r)}Rr=1 [6], [7]. The

premise for this partition is that Q ≤ R, with the clusters

{G(r)}Rr=1 representing the “spill over” regions mentioned in

Section II (see also [6]). Notice further that clusters were

supposed non-overlapping. A scenario with overlapping clus-

ters does not require major changes in the formulation, but

it substantially increases the computational complexity of the

localization algorithms; see Section IV. This issue will be the

subject of future research.

Under these assumptions, the problem of acquiring

Pr{zq(gi) = 1} is not identifiable (the user index is

never revealed). For this reason, the alternative receiver maps

Pr{z(r)(gi) = 1} are considered. Those represent the prob-

ability that a PU receiver is located at location gi, with

gi ∈ G(r). Note that if a PU receiver is actually located within

the area G(r), then Pr{z(r)(gi) = 1} > 0 for (some of) the

points gi ∈ G(r). If no PUs are located within G(r), then

Pr{z(r)(gi) = 1} = 0, for all gi ∈ G(r).

Using (as2), ym can be written as a linear function of the

new probabilities Pr{z(r)(gi) = 1} via

ym =
R
∑

r=1

∑

i|gi∈G(r)

φm,gi
Pr{z(r)(gi) = 1} (2)

The values of φm,gi
can be acquired using (1). Similarly, lever-

aging (as1), SU Um can utilize the accumulated interference

tweets {o(τ)}tτ=1 to quantify the average number of PU users

that were interfered by its transmissions; that is,

ŷm(t) :=

(

t
∑

τ=1

wm(τ)

)−1 t
∑

τ=1

o(τ)wm(τ). (3)

The idea now is to use the values of ŷm(t) and φ̂m,gi
(t)

to estimate, at time t, the receiver maps. To this end,

let β(r) be a |G(r)| × 1 vector collecting the beliefs

Pr{z(r)(gi) = 1} for gi ∈ G(r); φ̂
(r)

m (t) a vector collect-

ing the regressors φ̂m,gi
(t) for gi ∈ G(r) [cf. (1)]; and

define vectors β := [(β(1))T , . . . , (β(R))T ]T and φ̂m(t) :=

[(φ̂
(1)

m (t))T , . . . , (φ(R)
m (t))T ]T . With these notational conven-

tions, (2) can be written as ŷm(t) =
∑R

r=1(φ̂
(r)

m (t))T β(r) =

(φ̂m(t))T β + em(t), where em(t) stands for the errors in

the estimate of the average interference rates {ŷm(t)}. Upon
defining vectors ŷ(t) := [ŷ1(t), . . . , ŷM (t)]T and e(t) :=
[e1(t), . . . , eM (t)]T and matrix Φ̂(t) := [φ1(t), . . . ,φM (t)]T ,
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the following linear model holds2

ŷ(t) = Φ̂(t)β + e(t). (4)

For dense grids, one has that M ≪ G, and thus (4) is an

under-determined system of linear equations. Nevertheless,

since the number of grid points G can be much higher than

the PU receivers (i.e., R ≪ G), the vector of unknowns β

is inherently sparse. Specifically, group sparsity [8] emerges

from the employed grid-based model, since the entries of a

sub-vector β
(r)

are all zeros if no PU receivers are located

within area G(r); and, β(r) 6= 0 otherwise. Though, using

a sufficiently dense grid, a PU receiver may be located in

proximity to a point gi ⊂ G(r); this implies that sparsity

emerges also at an entry-level, since only a few of the entries

in β(r) may be nonzero.

The so-called sparse group Lasso (SG-Lasso) [9], [10]

provides a parsimonious model estimate, where sparsity is

accounted for both at the group- and at the single-coefficient

levels. To this end, the conventional least-squares (LS) cost

is regularized with the sparsity-promoting terms λ1‖β‖1 and

gλ2(β) := λ2

∑R
r=1 ‖β

(r)‖2, where λ1 and λ2 are tuning

parameters. Thus, taking also into account the non-negativity

of β, the vector of beliefs can be estimated by solving the

following sparse linear regression problem3:

β̂(t) := arg min
β�0

1

2

∥

∥

∥
ŷ(t)− Φ̂(t)β

∥

∥

∥

2

2
+ gλ2(β) + λ11

T
Gβ. (5)

Given β̂(t), the number of PU receivers is given by Q̂ = |{r :

β̂
(r)
i > 0}|, whereas their locations are estimated as [6]:

x̂(r)(t) =

∑

i|gi∈G(r) giβ̂
(r)
i (t)

∑

i|gi∈G(r) β̂
(r)
i (t)

. (6)

In principle, a constraint 1T
|G(r)|

β(r) ≤ 1 could be added per
cluster r, to ensure that the probability of a PU receiver being

within G(r) does not exceed 1. However, the very same effect
can be obtained by properly adjusting λ1, or by replacing

λ11
T
Gβ with its weighted counterpart

∑

r λ1,r1
T
|G(r)|

β(r) for a

set of properly chosen coefficients {λ1,r} [12, pp. 241–249].

Problem (5) can be conveniently re-formulated as a sec-

ond order cone program (SOCP), and thus efficiently solved

via standard interior point methods. However, a reduced-

complexity algorithm attaining the optimal solution of SG-

Lasso problem will be developed in the ensuing section, using

the Alternating Direction Method of Multipliers (ADMM) [13,

Sec. 3.4]. But first, a remark is in order.

2Although originally ym and φm,gi
were power dependent (i.e., ym,l and

φm,l,gi
), power was marginalized and, hence, the power level index l was

dropped. Clearly, the model in (4) also holds if the power dependence is

restored. This would imply that the number of rows of ŷ(t) and Φ̂(t) would
be L times larger, increasing the computational complexity.

3Matrix Φ̂(t) is in general uncertain, since it collects estimates of the
probabilities {φm,gi

} [cf. (1)]. To account for possible non-negligible model
mismatches, the sparse total least-squares (TLS) framework proposed in [11],
and further extended in [10] to the case of hierarchical sparsity, can be
naturally employed here too.

A. ADMM-based solver

Consider introducing an auxiliary vector variable γ, and

reformulate (5) as follows [9], [10]:

min
γ,β�0

1

2

∥

∥

∥
ŷ(t)− Φ̂(t)β

∥

∥

∥

2

2
+ gλ2(γ) + λ11

T γ (7a)

subject to β = γ . (7b)

Indeed, constraint (7b) renders problems (5) and (7) equiv-

alent. Letting z denote the Lagrange multipliers associated

with the equality constraint (7b), the quadratically augmented

Lagrangian function of (7) is

L(β,γ, z) :=
1

2

∥

∥

∥
ŷ(t)− Φ̂(t)β

∥

∥

∥

2

2
+ λ2

R
∑

r=1

‖γ(r)‖2 + λ11
T γ

+ zT (β − γ) +
c

2
‖β − γ‖22 (8)

where c > 0 is an arbitrary constant [13]. Then, with

k ∈ N denoting the iteration index, the ADMM cyclically

computes: i) β(k + 1) = argminβ�0
L(β,γ(k), z(k)); ii)

γ(k + 1) = argminγ L(β(k + 1),γ, z(k)); and, iii) the

Lagrange multiplier vector z updates as z(k + 1) = z(k) +
c (β(k + 1)− γ(k + 1)).
Function L(β,γ, z) is quadratic in β, and thus the first step

of the ADMM boils down to the following update.

[S1] β(k + 1) =
[ (

Φ̂
T
(t)Φ̂(t) + cIG

)−1

×
(

Φ̂
T
(t)ŷ(t)− z(k) + cγ(k)

) ]∞

0
. (9)

Next, notice that minimization of the Lagrangian (8) with

respect to (w.r.t.) γ can be split into R SOCPs, one per sub-

vector γ(r). Thus, by computing the subdifferential of (8)

w.r.t. γ(r), it can be shown that the second step of the

ADMM amounts to the following nested soft-thresholding

operations [9]:

[S2] γ(r)(k + 1) =
{

0Nb
, ‖µ(r)‖2 = 0

µ(r)

c‖µ(r)‖2

[

‖µ(r)‖2 − λ2

]∞

0
, ‖µ(r)‖2 > 0

(10)

with
µ(r) = Tλ1

(

z(r)(k) + cβ(r)(k + 1)
)

(11)

and Tλ1(z) := [sgn(z1)[|z1| − λ1]+, . . . , sgn(zN )[|zN | −
λ1]+]

T . The soft-thresholding operation (11) accounts for the

sparsity at a single-coefficient level, whereas (10) enforces

group sparsity in γ(k + 1).
Finally, the following dual update is performed.

[S3] z(k + 1) = z(k) + c (β(k + 1)− γ(k + 1)) . (12)

B. Map-cognizant RA

The estimated beliefs β̂(t) and locations {x̂(r)(t)} are used
as inputs to optimize the SU network operation. Since the

focus of this paper is on the receiver map estimation task,

the considered RA scheme is just outlined next; details can

be found in e.g., [4], [5]. Under fairly general conditions, the

optimal resource allocation at time t amounts to maximizing

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

454



0 100 200 300 400
0

50

100

150

200

250

300

350

400

[m]

[m
]

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

time index
d
(x

(
q
) ,
x̂

(
q
) )

PU−rx 1, Bayesian

PU−rx 2, Bayesian

PU−rx 1, GS−Lasso

PU−rx 2, GS−Lasso

0 100 200 300 400
0

50

100

150

200

250

300

350

400

[m]

[m
]

0

0.1

0.2

(b) (c)

PU−rx 2

PU−rx 1

(a)

UD

β̂i

Fig. 1. (a) Considered scenario. (b) Evolution of the localization error d(x(r), x̂(r)). (c) Receiver map at t = 1000.

a functional UCR(t) := USU (t)+UPU (t), where USU (t) and
UPU (t) are the utilities for the SU and PU networks, respec-

tively. With an orthogonal access, utilities can be re-written as

UCR(t) =
∑

m wm(t)
(

USU,m(t |pm(t)) +UPU,m(t |pm(t))
)

.

Then, it can be shown that, at time t, the optimal p∗m(t)
for SU m is p∗m(t) = argmaxpm(t)∈Pm

(

USU,m(t |pm(t)) +
UPU,m(t |pm(t))

)

, while the optimum scheduling is w∗
m(t) =

1 if m = argmaxl
(

USU,l(t |p∗l (t)) + UPU,l(t |p∗l (t))
)

and

w∗
m(t) = 0 otherwise. A widely used alternative is to set

USU,m(t |pm(t)) = ρmrm(t)+µmpm(t), where the rate rm(t)
and power pm(t) are the resources and ρm and πm their corre-

sponding prices. When probability-of-interference constraints

must be guaranteed [2], USU,m(t |pm(t)) takes the form

λ
∑

q Pr{i
q = 1|wm(t) = 1, pm(t)}, where λ denotes the

Lagrange multiplier associated with the interference constraint

[4], while the dependence of Pr{iq = 1|wm(t) = 1, pm(t)} on
{Pr{zqgi

= 1}} was explicitly written when defining ym,l,gi
.

IV. PRELIMINARY RESULTS

Consider the scenario depicted in Fig. 1(a), where M = 12
SU transceivers (marked with green circles) are deployed over

an area of 400× 400 m. A PU transmitter communicates with

Q = 2 PU receivers (marked with blue circles). Notice that

both receivers are off the grid. The PU system is protected by

setting I = −70 dB and imax = 0.05. The path loss obeys

the model γm,x = ‖xm−x‖−3.5
2 , while a Rayleigh-distributed

small-scale fading is simulated. The SU network setup, as well

as the RA parameters are the the ones considered in [5]. The

PU coverage region is discretized using 138 uniformly spaced
grid points (marked with squares), each one covering an area

of 15 × 15 m. Further, the grid is partitioned in R = 10
clusters. Parameters λ1 and λ2 in (5) are set to 0.08 and 0.01,
respectively.

The localization error d(x(r), x̂(r)) :=
√

(x(r))2 − (x̂(r))2

per PU receiver is quantified in Fig. 1(b), and it is compared

to the one achieved when using the Bayesian estimator of [5].

Notice that the Bayesian scheme assumes that the PU system

broadcasts a binary message indicating whether at least one

receiver is interfered. Furthermore, since the Bayesian scheme

requires an estimate of the number of PU receivers, it is

assumed that 2 receivers are present. From Fig. 1(b), it can

be seen that the proposed localization scheme outperforms

the Bayesian method; in fact, the localization error incurred

by (5) is around 6meters for both receivers, while the Bayesian
method yields an error of 15 meters for PU q = 1.
Pictorially, performance of the receiver localization scheme

can be assessed through the maps shown in Fig. 1(c). The

value (color) of a point in the map represents the belief β̂i(t)
at the corresponding grid point gi ∈ G. Fig. 1(c) shows that,
through interference tweets, it is possible to unveil the areas

where PU receivers are likely to reside.

Future research will deal with mobile PU receivers and time-

varying PU activities.
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