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Abstract—A large family of broadband angle of arrival es-
timation algorithms are based on the coherent signal subspace
(CSS) method, whereby focussing matrices appropriately align
covariance matrices across narrowband frequency bins. In this
paper, we analyse an auto-focussing approach in the framework
of polynomial covariance matrix decompositions, leading to
comparisons to two recently proposed polynomial multiple signal
classification (MUSIC) algorithms. The analysis is complemented
with numerical simulations.

I. INTRODUCTION

The coherent signal subspace (CSS) technique was proposed

in [1] as an effective method for the estimation of angles

of arrival of spectrally overlapping broadband sources using

narrowband direction-finding algorithms such as MUSIC. A

fundamental feature of CSS is that it coherently combines

narrowband covariance matrices at different frequency bins

covering the band occupied by the sources. In its simplest

form, CSS pre-steers the array data by focussing matrices

such that the sources of interest appear in the vicinity of

the array’s broadside, where array response vectors for all

temporal frequencies approximately coincide. The focussing

matrices can be constructed from approximate knowledge of

the signals of interest’s directions of arrival (DoA).

The long evolution of CSS algorithms since this inception,

see e.g. [2], [3], includes a recently proposed auto-focussing

approach [5]. In this method, focussing matrices are directly

calculated from the array’s space-time covariance matrix with-

out the requirement for explicit knowledge of approximate

DoAs.

Different from CSS, where the wideband approach is clev-

erly bypassed in favour of narrowband processing, an EVD al-

gorithm for polynomial space-time covariance matrices [8] has

recently led to a broadband MUSIC algorithm [7]. Applicable

directly to broadband array data, these polynomial MUSIC

algorithms exploit the idea of signal subspaces created by the

polynomial EVD [8]. While this approach seems distinct from

CSS, the purpose of this paper is to highlight the similarities

by expressing the auto-focussing approach [5] in terms of

polynomial matrix decompositions.

Below, we define a broadband steering vector, the polyno-

mial space-time covariance matrix and polynomial EVD in

Sec. II, and review the auto-focussing broadband approach

in Sec. III. The formulation of MUSIC based on the auto-

focussing method of [5] is then related to the two polynomial

MUSIC algorithms in [7] in Sec. IV. Two illustrative sim-

ulations are included in Sec. V, followed by conclusions in

Sec. VI.

II. SYSTEM MODEL

Based on the signal model for a broadband array described

in Sec. II-A, Sec. II-B defines a polynomial space-time co-

variance matrix.

A. Broadband Steering Vector

An M -element array of omnidirectional sensors located

at positions rm, m = 1 . . .M collects broadband data in a

vector x[n] ∈ CM . For the lth far-field source sl[n], the array

experiences a planar wavefront with normal kl. We are only

interested in the relative delay between signals at the sensors,

such that the contributions to x[n] in the absence of attenuation

due to propagation is

x[n] =
∑

l

∞
∑

ν=0

al[ν]sl[n− ν] + v[n] (1)

with the broadband steering vector ai[n]

al[n] =
1√
M







δ[n− τl,0]
...

δ[n− τl,M−1]






(2)

and the normalised delays τl,m =
k
H

l rm

cTs
, whereby Ts is the

sampling period and c the propagation speed in the medium,

such that kl/c is the lth source’s slowness vector. The vector

v[n] adds spatially and temporally uncorrelated noise with

covariance E
{

v[n]vH[n]
}

= σ2
vI to the model in (1). Below,

aϑ,ϕ[n] refers to a broadband steering vector determined by k

with azimuth ϕ and elevation ϑ.

B. Space-Time Covariance Matrix and Polynomial EVD

Collecting an M -element broadband array data vector

x[n] ∈ CM , its space-time covariance matrix is given by

R[τ ] = E
{

x[n]xH[n− τ ]
}

, (3)

which forms a transform pair with the cross power spectral

density (CSD) matrix R(z) •—◦ R[τ ],

R(z) =
∑

τ

R[τ ]z−τ . (4)
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The CSD matrix is parahermitian, i.e. R(z) = R̃(z) =
RH(1/z∗). Based on (1) and with al[n] ◦—• al(z), it can

also be expressed as

R(z) =
∑

l

al(z)Sl(z)ãl(z) + σ2
vI , (5)

with Sl(z)|z=ejΩ the power spectral density (PSD) of the lth
source signal, sl[n].

A polynomial EVD [8] decouples the parahermitian R(z)
by means of a paraunitary Q(z),

Γ(z) = Q̃(z)R(z)Q(z) , (6)

such that Γ(z) = diag{Γ1(z) Γ1(z) . . . ΓM (z)} is diag-

onalised and spectrally majorised with PSDs Γi+1(e
jΩ) ≥

Γi(e
jΩ) ∀Ω, i = 1 . . . (M − 1) , with Γi(e

jΩ) =
Γi(z)|z=ejΩ . Below, we use this decomposition framework to

express the CSS approach.

III. COHERENT COVARIANCE AND AUTO-FOCUSSING

MATRICES

A. Coherent Signal Subspace Method

Based on a K-point DFT of the space-time covariance

matrix,

R(ejΩk) =

K−1
∑

τ=0

R[τ ]e−jΩkτ (7)

with Ωk = 2π
K
k, k = 0 . . .K − 1, the CSS method is based

on a covariance matrix

Rcoh =
1

K

K−1
∑

k=0

T(ejΩk )R(ejΩk)TH(ejΩk ) , (8)

obtained by coherently combining across frequency bins

through unitary and frequency-dependent focussing matrices

T(ejΩ).

Following the “auto-focussing” approach of [5], for a refer-

ence frequency Ω0, an EVD of the appropriate frequency-bin

covariance matrix R(ejΩ0) yields

Λo = QH
0 R(ejΩ0 )Q0 . (9)

Together with the modal matrix QH(ejΩk ) extracted for fre-

quency bin k, k = 0 . . . (K − 1), the auto-focussing matrix is

constructed as

T(ejΩk ) = Q0Q
H(ejΩk) . (10)

Therefore, the coherent covariance matrix in (8) can be diag-

onalised by Q0 to provide

Λcoh = QH
0 RcohQ0 = diag{λ1 λ2 . . . λM} , (11)

with λm, m = 1 . . .M the eigenvalues of Rcoh in (8).

B. Auto-Focusssing Approach via CSD Matrix and PEVD

With the modal matrix Q0 obtained at the reference fre-

quency via EVD of (7), the focussing matrix can be formulated

as a paraunitary matrix T(z)|z=ejΩ = Q0Q
H(ejΩ). Replacing

the summation over frequency bins in (8) by the integration

over the Fourier transform (i.e. K → ∞) leads to

Rcoh ≈ 1

2π

∮

{

T(z)R(z)T̃(z)
}

z=ejΩ
dΩ (12)

= Q0
1

2π

∮

{

Q̃(z)R(z)Q(z)
}

z=ejΩ
dΩ QH

0 . (13)

Since the paraunitary matrix Q(z) diagonalises R(z), the

argument under the integral is the polynomial EVD of (6),

resulting in a diagonal matrix of power spectral densities,
1
2π

∮

Γ(ejΩ)dΩ = Γ[0], where Γ[0] is the evaluation of

Γ[τ ] ◦—• Γ(z) for zero lag. Therefore

Rcoh ≈ Q0Γ[0]Q
H
0 = Q0







σ2
1

. . .

σ2
M






QH

0 (14)

represents the coherent covariance matrix in terms of the

polynomial EVD of the CSD matrix.

Given that the DFT in (7) is a sufficiently accurate represen-

tation of the Fourier transform formulation in (12), then (11)

and (14) are equivalent with Λ = Γ[0]. Further, the PEVD of

the CSD matrix provides a paraunitary Q(z) that leads to an

auto-focussing matrix Q0Q̃(z) that is continuous in frequency.

IV. BROADBAND ANGLE OF ARRIVAL ESTIMATION

A. MUSIC Based on Auto-Focussing Approach

Based on the coherent covariance matrix, the standard

MUSIC algorithm can be applied by probing the noise-only

subspace of Rcoh with a set of steering vectors at the reference

frequency Ω0.

If the eigenvalues Rcoh reveal R linearly independent

sources, then the last M − R columns of Q0 =
[

Q0,sQ
⊥
0,s

]

contained in Q⊥
0,s ∈ CM×(M−R) span the noise-only subspace

of the coherent covariance matrix. Scanning for azimuth and

elevation angles, aϕ,ϑ(z) can be evaluated at the reference

frequency Ω0, leading to the MUSIC spectrum

SAF(ϕ, ϑ) = ‖Q⊥

0,saϕ,ϑ(e
jΩ0 )‖−2

2

=
1

aHϕ,ϑ(e
jΩ0 )Q⊥,H

0,s Q⊥
0,saϕ,ϑ(ejΩ0 )

. (15)

B. Polynomial Spatio-Spectral MUSIC

For the polynomial MUSIC algorithm, a spatial and a spatio-

spectral version have been suggested in [7]. Both versions re-

quire the identification of the polynomial noise-only subspace

given R sources identified from Γ(z),

Q(z) =
[

Qs(z)Q
⊥

s (z)
]

, (16)
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where Q⊥
s ∈ C

M×R(z). The polynomial spatio-spectral (PSS)

MUSIC is based on inverting a PSD-type function,

SPSS(ϕ, ϑ, e
jΩ) =

1

ãϕ,ϑ(z)Q̃⊥
s (z)Q

⊥
s (z)aϕ,ϑ(z)

∣

∣

z=ejΩ
.

(17)

Provided that the estimation of the number of linearly inde-

pendent sources, R, is the same from (11) for auto-focussing

(AF) and from (14) of the polynomial approach, then with Q0

being the evaluation of the paraunitary Q(z) at the reference

frequency Ω0, i.e. Q0 = Q(z)|z=ejΩ0 , it follows that

SAF(ϕ, ϑ) = SPSS(ϕ, ϑ, e
jΩ)|Ω=Ω0

. (18)

Therefore, the auto-focussing approach to coherent signal

subspace MUSIC estimation is equivalent to evaluating the

polynomial spatio-spectral MUSIC spectrum at the reference

frequency Ω0.

To obtain the same spatio-spectral characterisation of the

array data as provided by PSS-MUSIC with the auto-focussing

approach, a sequence of different modal matrices Q0 at

different reference frequencies Ω0 could be calculated, for all

of which (15) is evaluated.

C. Polynomial Spatial MUSIC

The polynomial spatial (PS) MUSIC estimate [7] integrates

the PSD in the denominator of (17), providing a power term

γ =
1

2π

∮

(

ãϕ,ϑ(z)Q̃
⊥

s (z)Q
⊥

s (z)aϕ,ϑ(z)
)

∣

∣

z=ejΩ
dΩ . (19)

The PS-MUSIC spectrum is given by the reciprocal of (19),

SPS(ϕ, ϑ) =
1

γ
. (20)

If the integral in (19) is approximated by a sum over discrete

frequency bins, i.e.

γ ≈ 1

K

K−1
∑

k=0

aHϕ,ϑ(e
jΩk)Q⊥,H

s (eΩk)Q⊥

s (e
jΩk)aϕ,ϑ(e

jΩk),

(21)

then (21) is the summation over the denominator terms of (15)

for all possible reference frequencies Ωk with Ωk = 2π
K
k,

k = 0 . . . (K − 1). The paraunitary matrix Q(z) that feeds

into (21) has been demonstrated in (14) to cohere the spatio-

temporal covariance matrixin the auto-focussing sense.

V. NUMERICAL SIMULATIONS

A. Implementational Aspects

It has been shown in [9] that the polynomial EVD in (6) ful-

filling spectral majorisation can be approximated very closely

by FIR paraunitary matrices even if an exact decomposition

by FIR filter banks does not exist. Therefore, here we rely on

the second order sequential best rotation (SBR2) algorithm [8],

which iteratively approaches the decomposition in (6), and has

been proven to converge, whereby the number of iterations

will determine the accuracy with which diagonalisation and

spectral majorisation are approximated.

Broadband steering vectors are based on fractional delay

filters constructed from truncated sinc functions, which can

be substantially improved by applying a tapered window [10].
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Fig. 1. (a) PSS-MUSIC spectrum and (b) difference to AF-MUSIC for a
single source at ϑ = 90◦.

B. Idealistic Example with Exact PEVD

As a simple toy problem, a single source emits an uncor-

related Gaussian signal. In an otherwise noise-free scenarion,

this signal is received by an M = 4 element, spatially and

temporally critically sampled array from endfire position, such

that the broadband steering vector of the source is

a1(z) =
1√
M

[1 z−1 . . . z−M+1]T (22)

providing a space-time covariance matrix

R1(z) =













1 z1 . . . zM−1

z−1 1
...

...
. . .

...

z−M+1 . . . . . . 1













. (23)

Because R1(z) is rank one, a manifold of diagonalising

decompositions exists, with one possibility

Q(z) = diag
{

1 z−1 . . . z−M+1
}

TDFT, (24)

where TDFT is a normalised, unitary M -point DFT matrix.

For PSS-MUSIC in (17), the spectrum in Fig. 1(a) emerges,

identifying the DoA of the end-fire source. In line with broad-

band arrays, at lower frequencies the fixed aperture degrades

the spatial resolution, with no ability to discern sources at DC.

For auto-focussing, at a given reference frequency Ω0, it

can be shown that Rcoh,Ω0
= R(z)|z=ejΩ0 and Λcoh,Ω0

=
diag{1, 0 · · · 0}. Using the nullspace Q⊥

s (e
jΩ0 ) derived from

the EVD of Rcoh,Ω0
, the MUSIC spectrum is evaluated for

a range of K = 64 reference frequencies Ω0. This leads

to a spectrum very closely related to PSS-MUSIC, with

the difference, Sdiff(ϑ, e
jΩ) = |SPSS(ϑ, e

jΩ) − SAF(ϑ,Ω)|,
plotted in Fig.1(b). The error reaches a maximum of 10dB

where the PSS-MUSIC spectrum is numerically most sensi-

tive, i.e. towards the source at ϑ = 90◦, and for DC, Ω = 0,

which can be attributed to the inaccuracies in implementing

broadband steering vector. Note the trivial broadband steering

vector towards broadside ϑ = 0◦, a0◦(z) =
1
M
[1 1 . . . ]T, for

which the error in Fig. 1(b) is neglegible.
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Fig. 2. Comparison between AF-MUSIC (i) at Ω0 = π
2

, (ii) integrated
according to (21), and PS-MUSIC (iii) with estimated and (iv) ideal PEVD.

Due to the trivial space-time covariance matrix, SBR2 con-

verges instantly to the exact PEVD, yielding exact results for

PS-MUSIC in Fig. 2. AF-MUSIC is shown both for a single

reference frequency, and integrated over a range of reference

frequencies, with results somewhat degraded compared to PS-

MUSIC.

C. Realistic Scenario

For a more realistic scenario, we consider an M = 8
element array illuminated by a mixture of three mutually

uncorrelated Gaussian sources of equal power,

• ϑ1 = −30◦, active over range Ω ∈ [ 3π8 ; π],
• ϑ2 = 40◦, active over range Ω ∈ [π2 ; π], and

• ϑ3 = 20◦, active over range Ω ∈ [ 2π8 ; 7π
8 ],

mixed with uncorrelated Gaussian noise 30dB below the three

directional signals. Fig. 3 shows the PSS- and CSS-MUSIC

spectra, in the latter case evaluated for a set of reference fre-

quencies over small fractional bandwidths. In spectral ranges

where all sources are active, AF-MUSIC provides superior

resolution, also indicated by a snapshot for Ω = 3π
4 in Fig. 4;

outside the overlap region, the performance is degraded. PS-

MUSIC in Fig. 4 provides a lower resolution than auto-

focussing, but is calculated over the entire spectrum, hence

not requiring any prior spectral knowledge.

VI. CONCLUSIONS

Polynomial MUSIC algorithms have been compared to a

recently proposed auto-focussing (AF) approach, which is

claimed to be in the line of coherent signal subspace meth-

ods [5]. With the AF approach expressed in the framework of

polynomial space-time covariance matrices and their polyno-

mial eigenvalue decomposition, and under the assumption the

DFT sufficiently well approximating the Fourier transform, the

polynomial spatio-spectral MUSIC algorithm has been shown

to equate to the AF approach when evaluated at the reference

frequency, while the polynomial spatial MUSIC algorithm has

been shown to relate to a summation of AF terms for a set of

reference frequencies.

Numerical simulations have indicated that the polynomial

MUSIC methods perform similar to the AF-approach where

the exact PEVD is known or easily determined. For more

realistic scenarios, restricting AF to sensible fractional band-

widths will provide superior resolution over polynomial MU-

SIC; however, the latter does not rely on a-priori spectral

information and can be calculated over the entire bandwidth

with appealing results.
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Fig. 3. (a) PSS- and (b) AF-MUSIC spectra for 3 overlapping sources.
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