
Adaptive Search for Sparse Dynamic Targets
Gregory Newstadt, Dennis Wei, and Alfred O. Hero III,

University of Michigan, Dept. of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, USA

Abstract—We consider the problem of energy constrained and
noise-limited search for targets that are sparsely distributed over
a large area. We propose a multiple-stage search algorithm that
accounts for complex time-varying target behavior such as tran-
sitions among neighboring cells and varying target amplitudes.
This work extends the adaptive resource allocation policy (ARAP)
introduced in [Bashan et al, 2008] to policies with T � 2

stages. The proposed search strategy is driven by minimization
of a surrogate function for energy constrained mean-squared
error within locations containing targets. Exact optimization
of the multi-stage objective function is infeasible, but myopic
optimization yields a closed-form solution. We extend the myopic
solution with non-myopic considerations that save a percentage
of resources for exploring the scene at large. Empirical evidence
suggests that the non-myopic policy performs significantly better
than the myopic solution in terms of estimation error, probability
of detection, and robustness to model mismatch. Moreover,
the provided search policy has low computational complexity
compared to state-of-the-art dynamic programming solutions.

I. INTRODUCTION
This work considers localizing and estimating moving tar-

gets in noise under resource constraints. For stationary targets,
there has been significant work in adaptive localization and
estimation [1]–[4], viewing the targets as a sparse signal. In
these methods, past observations are used to shape future
measurements of the scenes, which can result in stronger
signal-to-noise-ratios (SNR).
In many applications such as wide-area surveillance, the

targets of interest are not likely to remain stationary during
the sensing period. Rather, they may exhibit complex dynamic
behavior, such as movement, entering/leaving the scene, and
obscuration. Dynamic programming (DP) [5] provides general
methods for solving sensing problems with dynamic targets.
However, exact DP methods generally are intractable when the
state space is large as in the work considered here. Chong [6]
shows that many adaptive sensing problems can be formulated
as partially observable Markov decision processes (POMDP)
and provides several approximate techniques. These POMDP
approximate solutions allow for non-myopic sensing, but also
suffer from large computational burdens for large state spaces.
In this paper, we provide a Bayesian formulation akin to [1]

and [7], namely the Dynamic Adaptive Resource Allocation
Policy (D-ARAP). This approach can simultaneously account
for multiple targets as well as continuous allocation of sens-
ing resources. D-ARAP has several interesting properties in
comparison to alternative frameworks for allocating limited
resources to localizing moving targets. First, it has significant
performance gains over the baseline policy that uniformly
allocates resources across the scene, in terms of estimation
error and detection probability. Second, D-ARAP empirically

performs at a similar level to POMDP approximate solutions,
albeit at a fraction of the computational cost. Finally, D-
ARAP has increased robustness to noise and model mismatch
as compared to myopic policies. The current paper improves
upon our preliminary work [7] on a similar problem by further
developing the optimization methods, comparing to gold-
standard methods in POMDP approximation, and extending
the performance analysis.
We formalize the problem in Section II and describe the

adaptive sensing policy in Section III. Numerical performance
analysis is given in Section IV. In Section V, we conclude and
point to future work.

II. PROBLEM FORMULATION

We consider a space X = {1, 2, . . . , Q} containing Q cells
and a time-varying region of interest (ROI) Ψ(t) ⊂ X , t =
1, . . . , T . Let Ii(t) be an indicator such that Ii(t) = 1 if i
is in the ROI at time t (i ∈ Ψ(t)) and Ii(t) = 0 otherwise.
We use a probabilistic signal model in which Ii(1) = 1 with
prior probability pi(1), independently of the other indicators.
For Ii(t) = 0, the corresponding signal amplitude θi(t) is
taken to be zero, while for Ii(t) = 1, the amplitude θi(t) is
modeled as a Gaussian random variable. The initial amplitudes
θi(1), i ∈ Ψ(1) are drawn independently with means μi(1)
and variances σ2

i (1). As in previous work [1], [2], a uniform
prior for targets is assumed with pi(1) = p0, μi(1) = μ0 and
σ2
i (1) = σ2

0 for all i.
We generalize previous work to include a dynamic target

state model. To describe the model, we index the targets by
target number instead of by cell: Let s(n)(t) ∈ Ψ(t), n =
1, . . . , |Ψ(t)| be the position of the n-th target at time t and
ϑ(n)(t) = θs(n)(t)(t) be its associated amplitude. Let α be
the probability that each target is removed from the scene at
each time. Conditioned on remaining in the scene, the target
transition and amplitude model is

Pr(s(n)(t+ 1) = i|s(n)(t) = j)

=

⎧⎨
⎩
(1 − α)π0, i = j
(1 − α)(1 − π0)

|G(j)|
, i ∈ G(j)

,
(1)

ϑ(n)(t+ 1) = ϑ(n)(t) +N (0,Δ2
θ) (2)

where π0 is the probability that a target remains in the same
location, and G(j) is the set of cells that are neighbors of
cell j. Note that we use a simple Gauss-Markov model [8] for
the target amplitude, but this is easily generalizable to richer
models. Moreover, while the target variance increases with t,
the tracking variance does not. Let B(t) be the event that a
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single new target enters the scene at time t with probability
β. Then conditioned on B(t),

s(|Ψ(t)|+1)(t+ 1)|B(t) ∼ Uniform{1, 2, . . . , Q},

ϑ(|Ψ(t)|+1)(t+ 1)|B(t) ∼ N (μ0, σ
2
0).

(3)

We restrict our attention to the case where at most one target
occupies a cell at any instant. In the sparse situations consid-
ered here (i.e. p0 � 1), this occurs with high probability.
Observations are made in T stages with effort levels λi(t)

that vary with location i and time t. In general, effort might be
computing power, complexity, cost, or energy that is allocated
to probing a particular cell. It is assumed that the quality
of an observation increases with effort. Given λi(t), the
corresponding observation yi(t) takes the form

yi(t) =
√
λi(t)Ii(t)θi(t) + ni(t), t = 1, . . . , T, (4)

where ni(t) ∼ N (0, σ2) is i.i.d. noise. The effort in each stage
is constrained as

∑Q
i=1 λi(t) ≤ Λ(t).

In this paper, the goal is to estimate{
Ψ(t), {θi(t)}i∈Ψ(t)

}
t=1,...,T

over T stages. It follows
that the objective function should depend on the posterior
distribution of the target state vector given the measurements.
When the targets are static, the posterior distribution factors
by cell and can be exactly represented by the posterior
mean/variance of the target amplitude and the posterior
probability of a target existing in each cell. In the dynamic
case, there is no simple factorization that allows for efficient
exact estimation of the posterior distribution, partly due to the
fact that the posterior distribution of the amplitudes becomes
a Gaussian mixture distribution (due to nonzero transition
probabilities to neighboring cells) rather than a simple
univariate Gaussian. There are several signal processing
algorithms that could be used to approximately estimate
the posterior distribution, including particle filters, extended
Kalman filters, and Unscented Kalman filters, with varying
tradeoffs between accuracy and computational burden.
A computationally efficient approximate method is provided

in [9] based on assumptions of sparsity (i.e. targets are well-
separated) and approximations to Gaussian mixtures using a
maximum likelihood approach. While full details are available
in [9], here we just note that given these assumptions, the
posterior distribution can be represented with the following:

x(t) =
{
pi(t), μi(t), σ

2
i (t)

}Q

i=1
(5)

pi(t) = Pr(Ii(t) = 1|Y (t− 1)), (6)
μi(t) = E[θi(t)|Ii(t) = 1,Y (t− 1)], (7)
σ2
i (t) = var[θi(t)|Ii(t) = 1,Y (t− 1)]. (8)

where Y (T ) = {yi(t)}i,t=1,...,T .

III. SEARCH POLICIES
This work considers a time-separable objective function as

follows:

J(λ;T ) = E

[
T∑

t=1

γ(t)

Q∑
i=1

pi(t)

σ2/σ2
i (t) + λi(t)

]
, (9)

where {γ(t)}Tt=1 is a set of known weights on different stages.
When the stage weights are given by γ(T ) = 1 and γ(t) = 0
for t < T , this cost function is exactly the MSE in estimating
{θi(T )}i∈Ψ(T ) in two cases: (a) when targets are static; and
(b), when the target locations may change but are known
exactly (i.e pi(T ) = Ii(T )). In practical cases when the ROI
is not known precisely, we use (9) as a surrogate objective.
The optimization problem can be stated as {λ̂i(t)}i,t =

argminλ J(λ;T ) where
∑Q

i=1 λi(t) ≤ Λ(t) for t =
1, 2, . . . , T . As discussed in previous work on a similar prob-
lem [2], it is possible in principle to use dynamic programming
to find the optimal solution. However, for T > 2, this exact
solution is computationally intractable due to the large sizes
of the state x(t) and the action space λ(t). As an alternative,
one may consider the myopic solution which optimizes

M(λ; t) =

Q∑
i=1

pi(t)

σ2/σ2
i (t) + λi(t)

,

Q∑
i=1

λi(t) ≤ Λ(t). (10)

The optimal solution as given in [2] begins by defining π to
be an index permutation that sorts the quantities

√
pi(t)σ

2
i (t)

in non-increasing order:√
pπ(1)(t)σ

2
π(1)(t) ≥ · · · ≥

√
pπ(Q)(t)σ

2
π(Q)(t). (11)

Let ci(t) = σ2/σ2
i (t). Then define g(k) to be the mono-

tonically non-decreasing function of k = 0, 1, . . . , Q with
g(0) = 0, g(Q) = ∞, and

g(k) =
cπ(k+1)(t)√
pπ(k+1)(t)

k∑
i=1

√
pπ(i)(t)−

k∑
i=1

cπ(i)(t) (12)

for k = 1, . . . , Q− 1. Then the solution to (10) is

λm
i (t) =

⎛
⎝Λ(t) +

k∗∑
j=1

cπ(j)(t)

⎞
⎠ √

pπ(i)(t)∑k∗

j=1

√
pπ(j)(t)

− cπ(i)(t),

(13)
for i = 1, . . . , k∗ and λm

i (t) = 0 else. The number of nonzero
components is determined by the interval (g(k − 1), g(k)]
to which the budget parameter Λ(t) belongs. Since g(k) is
monotonic, the mapping from Λ(t) to k∗ is well-defined.
Myopic policies can incur several drawbacks by being

overly aggressive in the allocation of resources. This may lead
to missed or lost targets as well as a lack of robustness to
model mismatch. Chong [6] shows that there are significant
gains to be had by using non-myopic policies, which trade off
short-term performance gains for long-term benefits.
We propose a simple improvement to the myopic policy that

uses a convex combination between exploitation of the current
belief state and exploration of the scene at large. The proposed
non-myopic allocation policy is termed the Dynamic Adaptive
Resource Allocation Policy, or D-ARAP, and defined by

λDARAP
i (t;κ) = [κ(t)]λuni(t) + [1− κ(t)]λm

i (t), (14)

where κ(t) ∈ [0, 1], λuni(t) = Λ(t)/Q is the uniform
allocation policy, and λm

i (t) is given by (13).
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procedure {κ(τ)}Tτ=1 = NestedPolicy
Set κ(1) = 1, κ̃(1) = ∅, κ̃(2) = {0}.
for τ = 3, . . . , T do
for each κ(2) ∈ [0, 1] do
Set κ(τ) = {κ(1), κ(2), κ̃(τ − 1)}.
Calculate C(κ(2)) = J(λDARAP (κ(τ)); τ).

end for
Choose κ̂(2) = argmin

κ(2)
C(κ(2)).

Set κ̃(τ) = {κ̂(2), κ̃(τ − 1)}.
end for
Return {κ(τ) = {κ(1), κ̃(τ)}}Tτ=1.

end procedure

Fig. 1. Nested policy pseudocode

Without prior knowledge on the location of targets, the first
stage should be purely exploratory, i.e., κ(1) = 1. In addition,
since the last stage should be purely exploitative or myopic,
κ(T ) = 0. To determine the full set of parameters κ(T ) =
{κ(t)}Tt=1, we consider offline policies, which are determined
prior to collecting observations, and online policies, which are
determined adaptively as measurements are collected. Note
that λm

i (t) is a function of previous measurements. Thus, the
offline policies can still be adaptive as long as κ(t) < 1.
We first describe an offline policy termed the “nested

policy” that is recursive in the sense that a T -stage policy
is created by building upon a previously defined (T −1)-stage
policy. The pseudocode for the nested policy is given in Fig. 1
and yields policies for {κ(τ)}Tτ=1 from 1 to T stages inclusive.
In each iteration, a τ -stage policy is constructed by searching
over a single parameter κ(2) followed by using the previously
defined (τ − 1)-stage policy. The values of κ(2) are chosen to
minimize the full non-myopic cost in (9).
The nested approach requires O(T 2) Monte Carlo simu-

lations to determine policies for {κ(τ)}Tτ=1. To lessen this
computational burden, we consider a “heuristic policy” which
requires O(T ) simulations. For t = 2, 3, . . . , T , κ̂(t) is
determined by the following (1 + ρ)-optimality criterion:

κ̂(t) = max
κ

{
κ : E[MD(κ; t)] < (1 + ρ)E[MD(0; t)]

}
,

(15)
whereMD(κ; t) is the myopic cost (10) using λDARAP (t;κ),
ρ > 0 is a tolerance, and expectations are taken over Y (t)
through Monte Carlo simulations. Since κ(t) = 0 optimizes
the myopic cost by definition, (15) results in a policy that
is within (1 + ρ) of the expected minimum myopic cost
at each stage. The overall policy is then given by κ(T ) =
{κ(1) = 1, κ̂(2), . . . , κ̂(T − 1), κ(T ) = 0}.
The nested and heuristic policy parameters are shown in

Fig. 2 for various values of SNR1 and T = 20. For t > 2, the
heuristic policy parameters are nearly monotonically decreas-
ing in both SNR and stage t. This motivates the “functional”

1SNR is defined in terms of the budget per stage Λ(t) and the noise variance
σ2 as SNR(Λ(t)) = 10 log10(Λ(t)/(Qσ2)).
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(a) Nested policy (vs. SNR)
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Fig. 2. Parameters κ(t) selected according to the (a) nested and (b) heuristic
strategies for policies of T = 20 stages, plotted against SNR per stage. In (c),
a plot of the heuristic policy parameters versus cumulative SNR motivates a
functional approximation to the heuristic strategy, shown by the red line.

policy (Fig. 2(c)), which uses a polynomial fit to the heuristic
policy parameters as a function of cumulative SNR2.
We also consider online policies, which select κ(t) inde-

pendently for each instantiation of the problem.Generally this
requires significantly more computation but may lead to better
results in some cases. We propose using a T0-stage rollout
policy [5], which requires a known base policy. In each stage
t, the rollout policy minimizes the total cost over the next T0

stages by searching over κ(t) and then using the base policy
for the T0−1 remaining stages. Similar to the nested/heuristic
policies, minimization is done through Monte Carlo estimation
of the cost function and a line search over κ(t).

IV. PERFORMANCE ANALYSIS
We use numerical comparisons to quantify the performance

gains and differences among the proposed policies. In these
simulations, we let Q = 104, p0 = 10−3, μ0 = 1, σ0 = 1/6,
π0 = 0.4, G = 2, α = β = 0, Δθ = 1/20, σ2 = 1, γ(t) =
(0.9)T−t in (9), and ρ = 0.1 for the heuristic D-ARAP policy.
We start by comparing performance of the proposed policies
for various values of SNR and policy lengths T . Performance
is compared against (a) a non-adaptive uniform policy which
evenly allocates resources across the scene and (b) an oracle
policy that knows the immediately previous locations Ψ(t−1)
when planning for stage t.
Figs. 3 (a) and (b) show the MSE gains (with respect to a

uniform policy) in estimating {θi(t)}i∈Ψ(t) as a function of
stage t. The nested policy generally has the highest gains in
MSE among non-oracle policies. Figs. 3 (c) and (d) show the
probability of detection for a fixed probability of false alarm
(Pfa = 10−4) as a function of t. Note that the probabilities

2Cumulative SNR is defined as SNR(
∑t

τ=1
Λ(τ)).
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(b) D-ARAP (functional) Policy
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Fig. 4. Gains (dB) in non-myopic cost (9) with respect to a uniform policy that evenly allocates resources everywhere. In this scenario, faulty measurements
every 15 stages cause corresponding drops in performance. The myopic policy shown in (a) misses targets, causing performance to trend downwards as t
and/or SNR increase. On the other hand, the D-ARAP (functional) policy shown in (b) shows robustness to the faulty measurements. In (c), the performance
is compared across the myopic/functional/rollout policies for SNR = 10 dB. The performance of the rollout policies closely parallels the performance of
D-ARAP, although the former incur a much larger computational burden.
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Fig. 3. Comparison of estimation and detection performance in low and high
SNR scenarios. In (a)/(b), gains in MSE with respect to a uniform allocation
policy are plotted on a dB scale as a function of t. The nested policy generally
results in the highest gains among non-oracle policies. In (c)/(d), probabilities
of target detection are plotted as a function of t for fixed probability of
false alarm Pfa = 10−4. The detection probabilities for D-ARAP (nested,
heuristic, functional) approach 1 faster than for the myopic/uniform policies.

of detection for D-ARAP (nested, heuristic, and functional
policies) consistently increase as t gets large and do so faster
than for the uniform and myopic policies.
In the next simulation, we test the policies when the sensor

has faults every 15 stages for a randomly selected subset of
targets, causing highly noisy measurements for those targets.
Figure 4 shows gains in terms of the non-myopic cost (9)
with respect to the uniform policy for the myopic, functional
D-ARAP, and rollout policies (T0 = 2 and T0 = 5). The
performance of the myopic policy trends downwards as either
SNR or t increases due to missed or lost targets. On the
other hand D-ARAP, which always allocates some resources
to exploration, provides robustness to the noisy measurements
and maintains positive gains over a uniform allocation policy.

The rollout policies are compared only for SNR = 10 dB due to
computational constraints. They have very similar performance
to D-ARAP although at a much larger computational cost.

V. DISCUSSION AND FUTURE WORK
In this paper, we have proposed a framework, namely D-

ARAP, that significantly extends previous work [1] to incorpo-
rate moving targets and long horizons, while providing com-
putationally tractable solutions as compared to standard dy-
namic programming approximations. Non-myopic policies are
presented which show robustness over myopic alternatives and
significant gains over non-adaptive strategies. Future research
paths include deriving analytical results such as convergence
rates to the ROI and/or minimum detectable amplitudes. We
would also like to continue investigating online policies that
are computed as measurements are collected.
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