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Abstract—Distributed learning via network diffusion is a

popular trend in signal processing, which addresses the need of

obtaining scalable analytics from networked sensor systems. This

paper describes relevant advances in distributed power system

state estimation (PSSE) via diffusion. Considering a hybrid sensor

measurements system, we show that the Gauss-Newton approach,

typically favored in PSSE, can be used as a primitive to derive

a gossip-based algorithm that outperforms first order diffusion

methods proposed in the literature. We also study analytically and

numerically the dependency between measurement placement,

grid topology and physical parameters, communication network

and the performance of the decentralized PSSE.

I. INTRODUCTION

Conforming to many classic sensor fusion problems, the
original formulation of power system state estimation (PSSE)
was cast as a non-linear least squares (NLLS) problem [1]
after gathering power measurements through the Supervisory
Control and Data Acquisition (SCADA) system at a control
center. The Gauss-Newton (GN) procedure (or its variants)
have been widely adopted to solve for the state numerically.
While the system grew in size and connectivity, together
with the insertion of Phasor Measurements Units (PMUs)
that provide phasor measurements at a fast rate, decentralized
solutions have been proposed to alleviate the communication
and computation burden at the control center [2]–[4]. In
these solutions, different areas estimate their local states using
redundant measurements that guarantee local observability, and
then refine them hierarchically by tuning the estimates on
neighboring buses. These methods typically rely on aggrega-

tion trees that limit their flexibility.

Recently, the authors in [5], [6] proposed distributed al-
gorithms that relax the requirement of local observability. In
particular, [5] used the so called alternating direction method

of multipliers (AD-MoM) to distribute PSSE algorithms us-
ing PMU measurements. However, the communications are
constrained by the grid topology and the effects of having
hybrid measurements are not studied. A step further towards
relaxing network and measurements constraints is the approach
proposed in [6], solving for the global state through gossiping.
The approach is inspired by [7], [8] that combine a local
descent step with a diffusion step. Compared to other decen-
tralized methods, gossip-based learning has minimal network
requirements. But the convergence of these algorithms depends
on the convexity of the cost and a small (or diminishing) step-
size which considerably slows down the algorithm. Because
PSSE is in general non-convex when SCADA measurements
are in the pool (i.e. power flow and injection), convergence is
not guaranteed and the initialization of the algorithm is crucial.

Given that the PMUs provide direct state measurements,
placing them strategically and exploiting such measurements
for initialization can aid significantly the convergence. There is
vast literature on PMU placement problem by minimizing the
deployment cost under observability constraints (see e.g. [9],
[10]) or by optimizing the achievable estimation accuracy [11],

[12]. However, having numerically stable decentralized PSSE
and being able to remove the influence of bad measurements
are two crucial aspects that were overlooked in the studies of
PMU placement, until recently. To overcome these issues, we
proposed in [13] a Decentralized Adaptive Re-weighted State

Estimation (DARSE) scheme and furthermore, derived a new
metric in [14] called Convergence-Observability-Performance
(COP) metric to account for the observability, accuracy, and
convergence of PSSE via Gauss-Newton, and used it success-
fully to ensure the numerical stability of the DARSE algorithm.

Our objective in this paper is to present these results in
a combined framework and perform numerical comparisons
that showcase how the judicious placement of sensors as well
as the use of second order methods contribute to improve
significantly the attainable performance in gossip-based PSSE
solutions. Hence, future database systems for the power grid
can be designed to have a peer to peer randomized network
structure, which is more scalable, resilient and self-healing
compared to the current aggregation architectures.

II. STATE ESTIMATION VIA NETWORK GOSSIPING

Optimization via network diffusion is possible if the learn-
ing problem can be formulated as a regression over the sum
of functions [7], [8]. In this section we first show how the
Maximum Likelihood (ML) PSSE can be cast as an instance
of such type of regression problem and then introduce a
methodology that gradually reduces the influence of outliers,
by learning the sensor measurement variances online.

A. System Model

Considering a power grid with the set N , {1, · · · , N}
of N buses and the set E , {(n,m)} of size |E| = L of
transmission lines between all bus pairs (n,m), the grid state
is the vector of voltage phasors. Instead of the convention-
al polar coordinates, we resort to the Cartesian coordinates
v = [<{V

1

}, · · · ,<{VN},={V
1

}, · · · ,={VN}]T where Vn

is the voltage phasor at bus n. Measurements for estimation
include the voltage phasor zV [t] 2 R2N and current phasor
zC [t] acquired via PMUs, and power injections zI [t] 2 R2N

at each bus and power flows zF [t] on each line acquired
by traditional SCADA systems that lack synchronization. The
subscripts mean voltage, current, injection and flow. The model
for measurement of type K 2 A , {V, C, I,F} is

zK[t] = fK(v̄[t]) + rK[t], (1)

where fK(v) is the power flow equation vector for type K,
¯v[t] is the true state, and rK[t] is the Gaussian noise with an
unknown covariance RK. We model outliers (due to attacks or
malfunction) as having large variances. The entries that have
large variances are what we call bad data.

The data collection architecture consists of I interconnect-
ed areas, where each area records a subset of zK in (1).
We use binary selection matrices TK,i 2 {0, 1}MK,i⇥2N for
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nodal measurements K 2 {V, I} and TK,i 2 {0, 1}MK,i⇥4L

for branch measurements K 2 {C,F} to model the specific
measurements taken in that area’s collection system. Then, the
vector of measurements for each type in the i-th area is

TK,izK[t] = TK,ifK(¯v[t]) +TK,irK[t]. (2)

Thus, the ML state and covariances estimates are

min

v2V,RK,i

IX

i=1

X

K2A
kTK,i (zK[t]� fK(v))k2R�1

K,i
+log det(RK,i),

where RK,i = TK,iRKT
T
K,i is the unknown covariance in the

i-th area for type K. For simplicity, the covariance is assumed
to be diagonal with RK,i = diag[�K,i]. Setting its derivatives
to zero, the ML estimates satisfy the following equations

bv = argmin

v2V

IX

i=1

X

K2A
kTK,i (zK[t]� fK(v))k2bR�1

K,i
(3)

b�K,i[t] = TK,i [zK[t]� fK(bv)]�TK,i [zK[t]� fK(bv)] (4)

which requires substituting b�K,i[t] back into (3) to solve for
bv. However, this requires complex computations. Hence, the
best option is to alternate between estimating the state and the
variances as measurements stream in. Since, the ML estimation
has the typical modular structure of optimization problems that
can be solved by network diffusion, next we show how the De-

centralized Adaptive Re-weighted State Estimation (DARSE)
scheme proposed in [13] takes advantage of this formulation.

B. Decentralized Adaptive Re-weighted State Estimation

The objective of the DARSE diffusion algorithm is to lead
each area i to be in consensus with the global state estimate.
Instead of only accruing information on the state in area i each
participating site effectively becomes a mirror for information
about the state of the entire grid, that can be shared with
client applications in full or partially. If the noise covariance is
known, the state (3) can be obtained from conventional PSSE
[1]. In the DARSE scheme, we propose to use the previous
covariance estimate as a substitute of bRK,i[t] to re-weight the
measurements and, thus, reduce the impact of highly noisy
data on the overall cost1. This strategy is an alternative to bad
data elimination techniques, used in centralized PSSE [1]. An
area involved in the DARSE scheme follows the steps below:

1) Predict �K,i =
bRK,i[t� 1], i = 1, · · · , I .

2) Update state estimates collaboratively

bv[t] = argmin

v2V

IX

i=1

kTK,i [zK[t]� fK(v)]k2��1
K,i

(5)

3) Adjust bRK,i[t] = diag[

b�K,i[t]] according to (4).

Since step (1) and (3) are decoupled, their decentralized
implementations are straightforward. Now we omit the index
t and focus on solving step (2). The global estimate bv is
traditionally obtained by the Gauss-Newton (GN) algorithm

vk+1

i = PV
⇥
vk
i + dk

i

⇤
, dk

i = Q�1

(vk
i )q(v

k
i ), (6)

where PV(·) is a projection on the space V, q(vk
i ) and Q(vk

i )

are scaled gradients and GN Hessian of the cost function

1If desired, one can iterate once again the state estimation after the outlier
covariance has been updated to give a better state.

q(vk
i ) =

1

I

IX

p=1

X

K2A
FT

K(v
k
i )T

T
K,p�

�1

K,pTK,p

⇥
zK � fK(v

k
i )
⇤

Q(vk
i ) =

1

I

IX

p=1

X

K2A
FT

K(v
k
i )T

T
K,p�

�1

K,pTK,pFK(v
k
i ), (7)

with the Jacobians given by FV(v) = I
2N , FC(v) = HC ,

FI(v) = (I
2N⌦vT

)HI and FF (v) = (I
4L⌦vT

)HF defined
in [13]. However, each area knows only its own estimate vk

i
and part of the measurements/functions in (7), which makes it
impossible to run step (2) in a decentralized setting. DARSE
solves step (2) via the Gossip-based Gauss-Newton (GGN)
algorithm we developed in [15], which emulates the exact GN
update in (6) by averaging via near-neighbor communications.
Specifically, the GGN algorithm alternates between the GN
update denoted by “k”, and the gossip exchange denoted by
“`”. All areas have a clock that determines the time t = ⌧k for
the k-th update across the network. After the k-th update, the
areas exchange information via gossiping at ⌧k,` 2 [⌧k, ⌧k+1

)

for `k times to compute the “network average” ¯hk and ¯Hk

¯hk =

1

I

IX

i=1

X

K2A
FT

K(v
k
i )T

T
K,i�

�1

K,iTK,i

⇥
zK � fK(v

k
i )
⇤

(8)

¯Hk =

1

I

IX

i=1

X

K2A
FT

K(v
k
i )T

T
K,i�

�1

K,iTK,iFK(v
k
i ) (9)

in order to approximate q(vk
i ) and Q(vk

i ). For this compu-
tation, each area combines the information from its neigh-
bors with a weight matrix Wk(`) , [W k

ij(`)]I⇥I during
[⌧k,`, ⌧k,`+1

), where W k
ij(`) is the weight associated to the

edge {i, j}, which is non-zero if and only if the pair of areas
{i, j} communicate with each other. Define the local vector at
the i-th area for the `-th gossip

Hk,i(`) =


hk,i(`)

vec [Hk,i(`)]

�
, (10)

with hk,i(0) , P
K2A FT

K(v
k
i )T

T
K,i�

�1

K,iTK,i

⇥
zK � fK(v

k
i )
⇤

and Hk,i(0) , P
K2A FT

K(v
k
i )T

T
K,i�

�1

K,iTK,iFK(v
k
i ). The i-

th area mixes the local information with its neighbors as

Hk,i(`+ 1) = W k
ii(`)Hk,i(`) +

X

j 6=i

W k
ij(`)Hk,j(`) (11)

for all i = 1, · · · , I . There are many ways to choose the
weights under different protocols (see [16]). The DARSE
scheme exploits the Uncoordinated Random Exchange (URE)
protocol specified in [13]. After `k exchanges, the GGN
descent for the (k + 1)-th update at the i-th area is computed
as dk

i (`k) = H�1

k,i(`k)hk,i(`k), which leads to

vk+1

i = PV
⇥
vk
i + dk

i (`k)
⇤
. (12)

III. PLACEMENT DESIGN FOR DARSE

As we said hybrid PSSE is a non convex problem and
initialization is of paramount importance. We explored this
problem in [14] and in [13] suggested to initialize DARSE
using the PMUs as follows:

v
0

= vnominal + (zV � vnominal)

IX

i=1

TT
K,iTK,i
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where vnominal is a nominal profile obtained from previous
estimates ( see [13] for more details) with a placement TK,i

for the PMUs that is designed for convergence based on the
solution in [14]2. In [14] the installed PMUs capture the
voltage and all incident current measurements on that bus (see
[10], [12]), so that {TC,i}Ii=1

depend entirely on {TV,i}Ii=1

.
Therefore, we define the PMU placement vector

V , [V
1

, · · · ,VN ]

T , Vn 2 {0, 1}, (13)

indicating if the n-th bus has a PMU.

Assuming the state is observable, we were able to find an
upper bound of the ML mean square error (MSE)

E kbv � ¯vk2 = Tr

⇥
[P(V) + S(¯v¯vT

)]

�1

⇤
 2N

�(V)

. (14)

where, with �
min

[·] denoting the minimum eigenvalue, �(V)

is the following function of the PMU placement

�(V) = inf

v2V
�
min

⇥
P(V) + S(vvT

)

⇤
. (15)

In (15), P(V) =

PN
n=1

Vn

⇣
HT

I,n�
�1

I,nHI,n +HT
J,n�

�1

J,nHJ,n

⌘
+

PN
n=1

Vn

⇣
��1

V,n ⌦ ene
T
n

⌘
and

S(vvT
) = HT

I

 
IX

i=1

TT
I,i�

�1

I,iTI,i ⌦ vvT

!
HI (16)

+HT
F

 
IX

i=1

TT
F,i�

�1

F,iTF,i ⌦ vvT

!
HF , (17)

where �I,n,�J,n 2 R2Ln⇥2Ln correspond3 to the variances
of the real and imaginary parts of current measurements
associated with line (n,m) at bus n (i.e., selected from �C,i if a
PMU is installed at bus n in area i), and �V,n 2 R2⇥2 contains
the variances of the real and imaginary parts of voltage
measurements in {�V,i}Ii=1

if bus n is in area i, and arbitrary
if otherwise since Vn = 0. The matrices P(V) and S(vvT

)

are the two terms present in the expression of the Hessian, due
to PMUs and SCADA measurements respectively:

Q(v) = [P(V) + S(vvT
)]/I, (18)

Therefore, we argue that PMU should be placed to maximize
�(V). It is shown next that maximizing �(V) also indirectly
improves the convergence.

As analyzed in [15, Theorem 2], the error made by the
decentralized update with respect to the exact update can be
bounded by an arbitrarily small constant

��dk
i (`k)� dk

i

��  C�`min
↵ , (19)

where `
min

, min{`k} is the minimum number of gossip
exchanges in the network for each update k, C is a constant
determined by the grid parameters and measurements and
�↵ = (1 � ↵IT

)

IT is a measure of the network connec-
tivity with ↵ being the minimal non-zero weight in matrix
{Wk(`)}k=1,··· ,1

`=1,··· ,`k . It is shown in [15, Theorem 1] that as
long as the minimum cost

PI
i=1

kTK,i [zK[t]� fK(bv)]k2��1
K,i

2We assume that SCADA measurements are given.
3The parameter Ln is the number of incident lines at bus n

is sufficiently small and `
min

is sufficiently large, the iterative
error is bounded as lim supk!1

��vk
i � bv

��  C�`min
↵ if

��v0

i � bv
�� < 2

s
�(V)

�(V)

� C�`min
↵ , (20)

where �(V) is a bound on the Lipschitz constant of the power
flow equations, approximated in [14] as

�(V) ⇡ �
max

[(I
2N � JV)

T
S(I

2N ) (I
2N � JV)], (21)

where S(I
2N ) is obtained by letting V = I

2N in (16). Thus,
the greater the COP metric ⇢(V) = �(V)/�(V), the less
sensitive PSSE is to initialization and the faster the algorithm
converges. Therefore, the PMU can play a dual role of both
providing a good initialization and lowering the error. Thus,
the optimal PMU placement design aims at maximizing

max

V

�
min

⇥
P(V) + S(vnomv

T
nom)

⇤

�
max

h
(I

2N � JV)
T
S(I

2N ) (I
2N � JV)

i (22)

s.t. JV = I
2

⌦ diag(V), 1T
NV  NPMU, Vn 2 {0, 1},

where vnom = [1T
N ,0T

N ]

T is a nominal profile used to avoid
the search in (15) and NPMU is the budget of PMU deploy-
ment. Solving this problem efficiently requires formulating the
problem as a semi-definite program under the relaxation of
Vn 2 {0, 1} to [0, 1] and the Charnes-Cooper transformation
in [14], but due to space contraints we do not repeat the lengthy
reformulation here and refer the readers to the details in [14].

IV. STUDY OF COMMUNICATION AND SENSING GRAPHS

In this section, we test the DARSE algorithm with op-
timal PMU placements based on (22) with NPMU = 6 for
different grid configurations and communication graphs. They
all consist of I = 5 areas: Figs. 1(a) is a hierarchical
graph from Area 1 to Area 5 while Figs. 1(d) and 1(f)
form a typical ring network between areas. These examples
are chosen considering the typical topologies found in the
distribution and transmission grids respectively, and assuming
that the communication lines are laid over these infrastructure,
resembling the underlying graphs. The figures also show
the algebraic connectivities of these three topologies (second
smallest eigenvalue �

2

of the Laplacian), which shows that the
tree network has much lower connectivity since there is no link
between Area 1 and Area 5. For each grid topology we have
N = 31 buses4 (PMU deployment ratio of 18.75%). PMU
locations are highlighted as P. Let U and ⌃ be the eigenvectors
and eigenvalues of the matrix S(I

2N ) determined by SCADA
measurements and grid topologies. The intensity of the color
at each node is given by kU(n, :)⌃k/maxn kU(n, :)⌃k as a
measure of its significance in the grid eigen-structure. A first
observation is that the optimal PMU placements align very
well with these highly influential nodes.

All the scenarios are tested using the same 80% of the
SCADA measurements randomly chosen from the ensemble
over 3 snapshots with 1 bad data in each area with 10 times
larger variances than the normal variance �2

= 10

�6, where
each snapshot is generated by perturbing the demand by 10%.
The state estimation and tracking performances for the DARSE

4The generators are located at bus 1 to 5 and the line parameters are adapted
from the IEEE-30 test case.
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(e) Ring `k = 100
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(g) Small World `k = 100

Fig. 1. Performances of individual areas for different grids using different communication networks.

scheme in different scenarios are illustrated in Figs. 1(b), 1(c),
1(e) and 1(g), compared with the centralized solution with
no bad data. We restrict the number of random pair-wise
exchanges across the entire network to be `k = 100 for all
K updates and average over 50 experiments.

For the tree network, `k = 100 is insufficient to diffuse
the local information on the state, which is, in turn, not
accurately estimated and tracked. When the exchanges increase
to `k = 300 the scheme achieves much better performance.
Both the lower algebraic connectivity (�

2

= 0.38 vs. �
2

=

1.38) and the asymmetry in buses and sensor information
gathered across areas render the DARSE over the tree network
slower compared to the ring and small world grid cases.
The asymmetry explains also why different areas saturate at
different error floors in the tree network with insufficient gossip
exchanges. In contrast, for the ring network and small world

network, it is observed that they achieve consensus and saturate
at the same error floor even with `k = 100 exchanges because
of the more balanced information carried by each area and the
higher communication connectivity �

2

= 1.38.

This brief analysis suggests that transmission networks
potentially more so than distribution networks can benefit from
gossip algorithm that capitalize on the relatively short nodal
distance attained by overlaying communication lines over the
small world nature of transmission lines.
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