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Abstract—In this paper, the problem of sequential waveform
design for target enumeration for cognitive multiple-input single-
output (MISO) radar is investigated. In the proposed technique,
the transmit spatial waveform is adaptively determined at each
step based on observations in the previous steps. The waveform
is determined to minimize an approximated lower bound on
the average sample number (ASN) required to achieve given
error rates. The algorithm is tested via simulations and shown to
exhibit superior performance compared to orthogonal waveform
transmission.

I. INTRODUCTION

Cognitive radar is an emerging technology proposed in [1]
and has been investigated in several works. A cognitive radar
system adaptively interrogates the radar environment based on
previous observations, side information, and task priorities. It
adaptively illuminates the environment in a closed loop manner
in order to optimize some predefined objective functions. In
[2] an adaptive technique for waveform design for target local-
ization was proposed. This technique is based on minimizing
performance lower bounds on the target parameters and it was
shown to automatically focus the transmit beam towards the
targets directions in a very low signal-to-noise ratio (SNR). In
[3], two adaptive waveform design techniques using sequential
hypothesis testing for target classification was proposed. In [4]
the problem of adaptive waveform design for sequential target
detection with subspace interference was investigated. In the
last two works, the Kullback-Leibler divergence (KLD) was
used as a criterion for adaptive waveform design.

Multiple-input multiple-output (MIMO) radar [5]-[7], has
attracted the attention of many researchers in the last decade.
One of the main directions of research within the topic of
MIMO radar is waveform design, which has been intensively
investigated in the recent years. Waveform optimization for
MIMO radar target localization using the Cramér-Rao bound
(CRB), was studied in [8]. In [9], [10] waveform design
based on mutual information and minimum mean-square-error
(MMSE) was considered and it was shown that by using
optimized waveforms, better detection performance can be ob-
tained. In [11] sequential Bayesian inference was investigated
using adaptive polarized waveform design for target tracking.

In this paper, an adaptive spatial waveform design tech-
nique for target enumeration is proposed. A multiple-input
single-output radar is considered. At each step, the posterior
probabilities for the different hypotheses which are charac-
terized by the number of targets, are computed. The spatial
waveform for the next transmit pulse is designed in order to

minimize an approximated lower bound on the average sample
number (ASN).

The paper is organized as follows. The next section
presents the signal model and the problem statement. In Sec-
tion III the criterion for waveform optimization is stated and
an adaptive waveform design scheme is presented. Section IV
derives an algorithm based on Bayesian information criterion
(BIC) for target enumeration and computation of the posterior
probabilities. In Section V, the performance of the proposed
adaptive waveform design technique is evaluated and compared
to fixed, orthogonal waveform transmission.

II. SIGNAL MODEL

Consider a mono-static radar consisting of a transmit
array of NT transmitters and a single receiving element. The
received signal model for a given range-Doppler cell in the
presence of M targets can be expressed as [5], [6]

xk,l = sTk,l

M∑
m=1

αmaT (θm)+vk,l, k = 1, 2, . . . , l = 1, . . . , L

(1)
where xk,l ∈ C, vk,l ∈ C, and sk,l ∈ CNT are the received
signal, the additive noise, and the transmit signal vector at the
lth snapshot of the kth step, and L denotes the number of
snapshots at each step. The parameters αm and θm denote
the complex attenuation and direction of the mth target,
respectively, and aT (·) ∈ CNT is the transmit array steering
vector where the array origin is set to the location of the
receiving element. We assume that {vk,l} are independent
and identically distributed (i.i.d.) complex circularly symmetric
Gaussian random variables with zero mean and variance σ2.
We will assume that the number of targets at the considered
range-Doppler cell, M , is smaller than the number of transmit
array elements, NT . This assumption is required also in non-
parametric source enumeration methods, which are based on
identification of the noise subspace whose size is given by
M −NT .

The sufficient statistic for estimating the target param-
eters at the kth step is given by correlating the received
signal with transmit signal. Let AT

4
= [aT (θ1), . . . ,aT (θM )],

α
4
= [α1, . . . , αM ]T , and Rsk

4
=

(
1
L

∑L
l=1 sk,ls

H
k,l

)∗
.

Then, the data model for the sufficient statistic, y
4
=

R
−1/2
sk

1
L

∑L
l=1 s∗k,lxk,l, is given by [6]

yk = R1/2
sk

ATα + wk, k = 1, 2, . . . . (2)
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It can be verified that the noise vector {wk} is an i.i.d.
sequence of complex circularly symmetric Gaussian random
vectors with zero mean and covariance σ2INT

. In the model
in (1), we assumed that α is constant during the L samples of
the signal.

At each step, k, we will perform J statistically independent
trials, with the same transmit signal. The model can be stated
as

yk,j = R1/2
sk

ATαj+wk,j , k = 1, 2, . . . , j = 1, . . . , J, (3)

where the sequence of coefficients vectors {αj} is assumed
to be i.i.d. whose elements are complex circularly symmetric
Gaussian vectors with zero mean and non-singular covariance
matrix Rα.

Let Yk
4
= [yk,1, . . . ,yk,J ]. In this work, we are interested

in the design of the transmit signal autocorrelation matrix at the
kth step, Rsk , given observations in previous steps (history),
denoted by Y(k−1) = [Y1, ...,Yk−1], where the objective is
to minimize the ASN required to determine the number of
targets with given probability of error. Based on the model
assumptions described above, the columns of Yk are i.i.d.
vectors yk,j ∼ CN (0,Ryk

) where

Ryk
= R1/2

sk
ATRαAH

T R1/2
sk

+ σ2INT
. (4)

In non-parametric source enumeration [12], the hypotheses
are described by the rank of the signal covariance matrix,
ATRαAH

T . In this approach, it is assumed that the columns
of AT are linearly independent and the matrix Rα is non-
singular. Accordingly, under the assumption that Rsk is non-
singular, hypothesis M , is characterized by

HM : rank
(
R1/2

sk
ATRαAH

T R1/2
sk

)
= M,

M = 0, . . . , NT − 1 (5)

III. SEQUENTIAL WAVEFORM DESIGN FOR TARGET
ENUMERATION

For non-singular transmit auto-correlation matrix, Rsk ,
model order selection can be easily performed using well
known techniques, such as, non-parametric [12], or parametric
[13] approaches. In this work, the cognitive radar system
interrogates the radar environment in order to minimize a lower
bound on the ASN for target enumeration. We will adopt a
Bayesian approach, where at each step the conditional proba-
bility of each hypothesis given prior observations is computed.
These conditional probabilities (posterior probabilities at step
k − 1) are used to design the transmit auto-correlation matrix
at step k, Rsk .

We will adopt a sequential hypothesis testing (SHT),
where at each step, a decision is made either on one of the
hypotheses or on whether to continue the experiment and
collect additional observations. The criterion for decision to
continue or stop the experiment is the probability of error.
In [14] a multi-hypothesis sequential test was proposed and
was employed also in [3]. According to this approach, at
the kth step, the likelihood ratio between every two pairs of
hypotheses, m and n, is computed, and denoted by Ψ

(k)
m,n.

Let pmn, (m 6= n) = 0, . . . , NT − 1 denote the desired
probability of incorrectly deciding Hn given true hypothesis

Hm. Then the experiment is terminated and Hm is selected if
Ψ

(k)
m,n > (1− pmn)/pmn, ∀n 6= m .

In [15] it is shown that if limk→∞
1
k log Ψ

(k)
m,n = qm,n,

where qm,n is a positive finite constant, then

ASN ≥ max
m6=n

log (1/pm,n)

qm,n
. (6)

For i.i.d. observations, the constants qm,n are given by qm,n =
KLD(Hm||Hn) where KLD(Hm||Hn) is the Kullback-
Leibler divergence (KLD) of the probability density function
(pdf) under hypothesis Hn from the pdf under hypothesis Hm.
In our case, the observations are not identically distributed
since we modify the transmit signal auto-correlation matrix at
each step. However, as explained in [3] we expect that as k
goes to infinity, the i.i.d. assumption will almost be satisfied.
Accordingly, similar to the approach presented in [3], we will
use the weighted KLD as a criterion for waveform design.

The problem of target enumeration, as stated in the previ-
ous section, is a nested hypothesis problem. Hence, the main
contribution to the probability of error is from errors between
adjacent hypotheses. Therefore, the criterion for waveform
design is composed of weighted KLD’s between adjacent
hypotheses:

Q =

NT−1∑
M=1

cMKLD (HM ||HM−1) , (7)

where cM , M = 1, . . . , NT − 1 are the weighting coeffi-
cients. For k statistically independent observations, the total
KLD between the pdf’s is given by the sum of KLD’s of
the corresponding pdf of each observation, and therefore the
criterion can be stated as

Qk =

NT−1∑
M=1

ck,M

k∑
l=1

KLDl (HM ||HM−1) . (8)

The coefficients ck,M , M = 1, . . . , NT − 1 can be set based
on the prior probabilities of the different hypotheses. Since Qk
depends on Rsk only through KLDk(·||·), then the criterion
for determining Rsk is given by maximizing

Q′k =

NT−1∑
M=1

ck,MKLDk (HM ||HM−1) . (9)

Let RM
4
= UΛMUH denote the singular value decom-

position of ATRαAH
T under hypothesis HM , where ΛM =

diag(λ1, . . . , λM , 0, . . . , 0) and U = [u1, . . . ,uNT
] are the

eigenvalues and eigenvectors matrices of ATRαAH
T , respec-

tively. Then, (4) can be rewritten as

Ryk,M
= R1/2

sk
UΛMUHR1/2

sk
+ σ2INT

. (10)

The KLD of the pdf under hypothesis HM−1 from the pdf
under hypothesis HM is given by the KLD for two zero-mean
complex Gaussian distributions with invertible covariance ma-
trices Ryk,M

and Ryk,M−1
:

KLDk (HM ||HM−1) = tr (Ck(M,M − 1))−NT
− log det (Ck(M,M − 1)) . (11)

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

70



where tr(·) and det(·) denote the trace and determinant
operators, and Ck(M,M − 1)

4
= R

−1/2
yk,M−1Ryk,M

R
−1/2
yk,M−1 .

From (10), we can express the following relation between
Ryk,M

and Ryk,M−1

Ryk,M
= Ryk,M−1

+ λMR1/2
sk

uMuHMR1/2
sk
. (12)

Using (12), the matrix Ck(M,M − 1) can be described as

Ck(M,M − 1) =INT
+

λMR−1/2yk,M−1
R1/2

sk
uMuHMR1/2

sk
R−1/2yk,M−1

.
(13)

Using Sylvester’s determinant identity and trace property, the
KLD from (11) can be expressed as

KLDk (HM ||HM−1) = zk,M − log (1 + zk,M ) . (14)

where
zk,M

4
= λMuHMR1/2

sk
R−1yk,M−1

R1/2
sk

uM . (15)

The optimization problem can now be stated as

R(opt)
sk

= arg max
Rsk

NT−1∑
M=1

ck,M (zk,M − log (1 + zk,M ))

s.t. tr (Rsk) = P, Rsk � 0 (16)

where P denotes the total power to be transmitted by the
transmit elements. This optimization involves knowledge of
the matrices of eigenvectors and eigenvalues, U and ΛM
under each hypothesis. These values can be substituted with
estimates from the previous step. Still, this optimization cannot
be performed analytically. Accordingly, we propose to set the
matrix of eigenvectors of Rsk to be identical to the matrix of
eigenvectors of RM . That is,

Rsk = UΛskUH . (17)

Thus, we control only the eigenvalues of the signal auto-
correlation matrix.

Using (17) , Ryk,M
from (10) can be expressed as

Ryk,M
= U

(
ΛMΛsk + σ2INT

)
UH . (18)

After a few lines of simple algebra and using (17), equation
(15) can be rewritten as

zk,M = λMeTM
(
ΛM−1 + σ2Λ−1sk

)−1
eM , (19)

where eM is the M th column of the identity matrix of size
NT . Since the M th element on the diagonal of ΛM−1 is equal
to zero, zk,M can be rewritten as

zk,M = λMλsk,M
/σ2, (20)

in which λsk,M
is the M th element on the diagonal of Λsk .

In order to understand this result, consider the case in
which the coefficients ck,M are equal to zero, except for
M = M0, with ck,M0

= 1. This setting means that the
main contribution to the criterion is due to possible confusion
between hypotheses M0 and M0 − 1. In this case, Q′k from
(9) becomes

Q′k = λMλsk,M
/σ2 − log

(
1 + λMλsk,M

/σ2
)
, (21)

which is monotonically increasing in λsk,M
. Incorporation of

the power constraint implies, that the entire signal energy
should be transmitted toward uM . This result could be a priori
expected, since the system illuminates the subspace of interest
that distinguishes between the two hypotheses.

Finally, by using (16), (17), and (20) one obtains

Λ(opt)
sk =argmax

Λsk

NT−1∑
M=1

ck,M

(
λMλsk,M

σ2
− log

(
1 +

λMλsk,M

σ2

))

s.t.

NT∑
M=1

λsk,M = P, λsk,M ≥ 0, M = 1, . . . , NT

(22)

and Rsk is constructed using (17), where U is substituted
by its estimate from previous observations. It can be seen that
the optimization problem in (22) is a convex set, since the
objective function is a weighted sum of convex functions with
non-negative coefficients.

IV. SEQUENTIAL TARGET ENUMERATION

In this section, we derive the posterior probabilities of the
hypotheses at each step. The posterior probability of hypothesis
HM at step k is given by

P (HM |Yk) =
fY(k)(Y(k)|HM )P (HM )

fY(k)(Y(k))
(23)

in which P (HM ) and fY(k)(Y(k)|HM ) denote the prior
probability and the likelihood function under hypothesis HM ,
respectively. For computation of fY(k)(Y(k)|HM ) we use the
BIC approximations [16]:

fY(k)(Y(k)|HM ) ≈ C

det(FIM(θ̂M ))
fY(k)(Y(k)|HM ; θ̂M )

(24)

where θ̂M denotes the ML estimate of the unknown parameters
under hypothesis HM , FIM(θ̂M ) is the Fisher information
matrix for estimating θM by Y(k), and C is a constant w.r.t.
M . In our case, the unknown parameters are given by the
eigenvectors and eigenvalues of RM . In the presence of i.i.d.
observations, the logarithm of the term det(FIM(θ̂M )) is
asymptotically given by the penalty of the minimum descrip-
tion length (MDL) plus some constant. The posterior pdf can
now be computed by substituting (24) into (23) where C and
the denominator of (23) can be obtained by normalization.
In our problem, the observations are not identically distributed
since the transmit auto-correlation matrix, Rsk is time-varying.

Finally, we need to compute the likelihood function under
HM and compute the ML estimate θM . The observations
yk,j modeled in (3), are statistically independent zero-mean
complex Gaussian with covariance matrices Ryl,M

given in
(10). Thus, the log-likelihood based on the observations from
the last k steps under hypothesis M is

L(RM ) = −J
k∑
l=1

(
log det

(
Ryl,M

)
+ tr

(
R−1yl,M

Sl

))
(25)

where Sl is the sample covariance matrix of the data at
the lth step and RM is defined immediately after (9). For
a single step k = 1, derivation of the ML estimates of
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Figure 1. Probability of error for target enumeration versus pulse index k,
using a MISO radar with a circular array of 16 elements.

the eigenvectors and eigenvalues of RM is straight-forward,
but for k > 1, it is not tractable. Alternatively, we mini-
mize

∑k
l=1

∥∥Sl −Ryl,M

∥∥2
F

where ‖·‖F denotes the Frobe-
nious norm. The solution under hypothesis M is given
by the eigenvectors are eigenvalues of R̂M which satisfies∑k
l=1 R

1/2
sl SlR

1/2
sl =

∑l
l=1 R

1/2
sk R̂MR

1/2
sl . This equation can

be easily solved, since the right hand side of the equation is
linear combinations of the elements of RM .

V. EXAMPLE

In the simulations, we considered a circular transmit array
of NT = 16 elements, with radius of half a wavelength.
A single receiving element was located at the center of
the transmit array. M = 4 far-field targets were located at
directions 60◦, 120◦, 180◦, 240◦. The SNR for all the 4 targets
was set to 5dB, where the SNR for the mth target is defined as
SNRm = |αm|2

σ2 . The transmit signal covariance matrix at the
first step was set to identity matrix, and the total transmit power
was set to P = 16. The probability of error in estimating the
number of targets was computed using 200 independent trials.

Fig. 1 presents the probability of error of the proposed
cognitive method as a function of the pulse step index, k, for
different numbers of snapshots. It can be seen that the prob-
ability of error for J ≥ 4 approaches zero as the pulse index
increases. Simulations shows that fixed orthogonal waveform
provide very poor performance for this scenario, especially in
cases where the number of snapshots per pulse, J is lower
than the number of transmit array elements.

VI. CONCLUSION

In this paper, a new technique for adaptive waveform
design was proposed for target enumeration by MISO radar.
Instead of transmission of identical waveforms, in the proposed
techniques, the waveform is determined at each step, in order to
minimize the ASN required to obtain predefined probabilities
of error in estimation of the number of targets. It is shown
that the proposed algorithm concentrates the transmit energy

toward the subspace representing the competing hypotheses
with highest probabilities. The proposed technique was tested
via simulations for adaptive spatial transmit waveform design.
The simulations show that the proposed technique results in
significantly better results compared to non-adaptive, orthog-
onal waveform transmission. Further research is required to
extend these results to MIMO radar with multiple receivers.
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