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Abstract—The universal multiple outlier hypothesis test-
ing problem is studied in two settings. In the first setting,
each outlier can be arbitrarily distributed, and the number
of outliers is fixed and known. In the second setting, the
number of outliers is unknown at the outset. Nothing is
known about the typical and outlier distributions other
than that they are different and have full supports. For
the first setting, a universally exponentially consistent
test is proposed, and its achievable error exponent is
characterized. The limiting error exponent achieved by
such test is analyzed as the number of coordinates goes
to infinity, and it is shown that the test also enjoys
universally asymptotically exponential consistency. For the
second setting, it is shown that with the assumption of
outliers being identically distributed and the exclusion of
the null hypothesis, a test based on the generalize likelihood
principle is universally exponentially consistent.

I. INTRODUCTION

In [1] and [2], we studied the inference problem of
universal outlier hypothesis testing, which involves iden-
tifying a small subset of outlier coordinates efficiently.
Universal outlier hypothesis testing finds applications in
event detection and environment monitoring in sensor
networks [3], understanding of visual search in humans
and animals [4], fraud and anomaly detection [5], [6]
in large data sets, and optimal search and target tracking
[7]. It was assumed in [1] and [2] that the outlier coordi-
nates are identically distributed according to the “outlier”
distribution, which is distinct from the common “typical”
distribution that governs the rest of the coordinates. The
number of outliers is fixed and known at the outset. This
inference problem was studied in the universal setting
without any prior knowledge about the outlier and typical
distributions.

The main finding in [1] and [2] is that one can
construct universal tests for the outlier hypothesis test-
ing problem that are far more efficient than those for
the other inference problems previously studied in the
universal setting, such as homogeneity testing or classi-
fication [8]–[12]. In particular, the test that we proposed
in [1] and [2] for the outlier hypothesis testing problem is
universally exponentially consistent, and it is impossible
to achieve universally exponential consistency for ho-
mogeneity testing or classification without training data

[11], [12]. In addition, we showed that our proposed
test was asymptotically efficient in the sense that its
achievable error exponent converged to the absolutely
optimal error exponent when both the outlier and typical
distributions were known.

It is to be noted that we made two important sim-
plifying assumptions in [2]: first, that all the outlier
coordinates were identically distributed, and second,
that the number of outliers was known exactly at the
outset. The purpose of this paper is to show that these
assumptions can be relaxed substantially. To this end,
we consider two new models, each an extension of the
model considered in [2].

In the first new model, each outlier can be arbi-
trarily distributed as long as it is different from the
typical distribution. It is interesting that the universal
test proposed in our previous work [2] does not rely on
the assumption of identically distributed outliers, and is
directly applicable to this extension. We characterize the
achievable error exponent for our proposed test and show
that it is universally exponentially consistent. In this new
model, the absolutely optimal (positive) error exponent
(when the outlier and typical distributions are known)
depends on the underlying distributions and the number
of coordinates, and can vanish to zero as the number of
coordinates goes to infinity. We show that the limit of the
error exponent achievable by our universal test is always
positive whenever the limit of the absolutely optimal
error exponent is. We call this property universally
asymptotically exponential consistency.

In the second new model, we relax the assumption that
the number of outliers is known exactly at the outset. In
particular, we show that the assumption of the outliers
being identically distributed and the exclusion of the null
hypothesis with no outlier present are critical for the
existence of a universally exponentially consistent test.
If either fails to hold, we show that there cannot exist
a universally exponentially consistent test. In all other
cases with uncertainty in the number of outliers, we
show, through the use of a universal test that strictly fol-
lows the generalized likelihood principle, that it is always
possible to obtain universally exponential consistency.
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The outline of the paper is as follows. We start by
describing a generic model in Section II with possibly
distinctly distributed outliers and without the number
of outliers being known exactly. Some useful decision-
theoretic distance metrics between distribution pairs and
technical facts are also reviewed in this section. Models
pertaining to the first extension with distinctly distributed
outliers but with the number of outliers being known
exactly are discussed in Section III. The extension with
identically distributed outliers but without the knowledge
of the number of outliers is treated in Section IV.

II. PRELIMINARIES

Throughout the paper, we denote random variables by
capital letters and their realizations by the corresponding
lower-case letters. All random variables are assumed to
take values in finite sets, and all logarithms are the
natural ones.

For a finite set Y , let Ym denote the m Cartesian
product of Y , and P(Y) denote the set of all probability
mass functions (pmfs) on Y . The empirical distribution
of a sequence y = ym = (y1, . . . , ym) ∈ Ym, denoted
by γ = γy ∈ P(Y), is defined as

γ(y) ,
1

m

∣∣ {k = 1, . . . ,m : yk = y}
∣∣, y ∈ Y.

Consider n independent and identically distributed
(i.i.d.) vector observations, each of which has M inde-
pendent coordinates. We denote the i-th coordinate of
the k-th observation by Y

(i)
k ∈ Y. It is assumed that

most coordinates are commonly distributed according
to the “typical” distribution π ∈ P(Y) except for a
small (possibly empty) subset S ⊂ {1, . . . ,M} of
“outlier” coordinates, each of which is assumed to be
distributed according to an outlier distribution µi, i ∈ S.
Nothing is known about {µi}Mi=1 and π except that each
µi 6= π, i = 1, . . . ,M, and that all µi, i = 1, . . . ,M,
and π have full supports. In the following presentation,
we sometimes consider the special case when all the
outlier coordinates are identically distributed, i.e., µi =
µ, i = 1, . . . ,M .

For a hypothesis corresponding to an outlier subset
S ⊂ {1, . . . ,M} , |S| < M

2 , the joint distribution of all
the observations is

pS
(
yMn

)
= pS

(
y(1), . . . ,y(M)

)
=

n∏
k=1

{∏
i∈S

µi

(
y
(i)
k

)∏
j /∈S

π
(
y
(j)
k

)}
,

where

y(i) =
(
y
(i)
1 , . . . , y(i)n

)
, i = 1, . . . ,M.

We refer to the unique hypothesis corresponding to
the case with no outlier, i.e., S = ∅, as the null

hypothesis. In the following sections, we shall consider
different settings, each being described by a suitable set
S comprising all possible outlier subsets.

The test for the (true) outlier subset is done based on
a universal rule δ : YMn → S. In particular, the test δ
is not allowed to depend on

(
{µi}Mi=1 , π

)
.

For a universal test, the maximal error probability,
which is a function of the test and

(
{µi}Mi=1 , π

)
, is

e
(
δ,
(
{µi}Mi=1 , π

))
, max

S∈S

∑
yMn: δ(yMn) 6=S

pS
(
yMn

)
,

and the corresponding error exponent is defined as

α
(
δ,
(
{µi}Mi=1 , π

))
, lim
n→∞
− 1

n
log e

(
δ,
(
{µi}Mi=1 , π

))
.

Our results will be stated in terms of various distance
metrics between a pair of distribution p, q ∈ P (Y) .
In particular, we shall consider two symmetric distance
metrics: the Bhattacharyya distance and Chernoff infor-
mation, denoted respectively by B(p, q) and C(p, q), and
defined as (see, e.g., [13])

B(p, q) , − log

(∑
y∈Y

p(y)
1
2 q(y)

1
2

)
(1)

and

C(p, q) , max
s∈[0,1]

− log

(∑
y∈Y

p(y)sq(y)1−s
)
, (2)

respectively. Another distance metric, which will be key
to our study, is the relative entropy, denoted by D(p‖q)
and defined as

D(p‖q) ,
∑
y∈Y

p(y) log
p(y)

q(y)
. (3)

Unlike the Bhattacharyya distance (1) and Chernoff
information (2), the relative entropy in (3) is a non-
symmetric distance [13].

III. MODELS WITH KNOWN NUMBER OF OUTLIERS

We start by considering the case in which the number
of outliers, denoted by T > 1, is known at the outset, i.e.,
|S| = T, for every S ∈ S. Note that unlike in [2][Section
VI] wherein it was assumed that all outlier coordinates
are identically distributed, in the model being currently
considered in this section, the distributions of outlier
coordinates µi, i ∈ S, can be distinct.

A. Proposed Universal Test
In [2], we proposed a universal test based on the

generalized likelihood principle for two setups: the setup
when only π is known and the completely universal
setup. We employ this same test in the current setup
of this section. We now give a summary of this test; its
detailed derivation can be found in [2].
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The test is done based on the following statistics. For
each S ∈ S,

U typ
S

(
yMn

)
,
∑
j /∈S

D(γj‖π) (4)

for the setup when only π is known, and

U univ
S

(
yMn

)
,
∑
j /∈S

D
(
γj

∥∥∥ ∑k/∈S γk
M−T

)
(5)

for the completely universal setup, where γj denotes the
empirical distribution of y(j). These statistics are related
to the negative of the generalized log-likelihood of yMn

of the hypothesis corresponding to an outlier subset
S ⊂ {1, . . . ,M} for the respective setups (see [2]). The
test then selects the hypothesis with the largest such
generalized log-likelihood (ties are broken arbitrarily),
i.e.,

δ
(
yMn

)
= argmin

S⊂{1,...,M}, |S|=T
U typ
S

(
yMn

)
(6)

when only π is known, and

δ
(
yMn

)
= argmin

S⊂{1,...,M}, |S|=T
U univ
S

(
yMn

)
, (7)

for the completely universal setup.

B. Performance of the Proposed Test

Proposition 1. For every fixed number of outliers T > 1,
when all the µi, i = 1, . . . ,M, and π are known, the
optimal error exponent is equal to

min
1≤i<j≤M

C (µi (y)π (y′) , π (y)µj (y′)) . (8)

When all outlier coordinates are identically dis-
tributed, i.e., µi = µ 6= π, i = 1, . . . ,M, this optimal
error exponent is independent of M and is equal to (cf.
[2][Theorem 4])

2B (µ, π) . (9)

Theorem 2. For every fixed number of outliers T > 1,
when only π is known but none of µi, i = 1, . . . ,M is
known, the error exponent achievable by our test in (4),
(6) is equal to

min
1≤i≤M

2B (µi, π) . (10)

When all outlier coordinates are identically dis-
tributed, i.e., µi = µ, i = 1, . . . ,M, this achievable error
exponent is equal to, cf. [2][Theorem 4],

2B (µ, π) , (11)

which, from Proposition 1, is the optimal error exponent
when µ is also known.

Remark 1. Since the tester in Proposition 1 is more
capable (with π known) than that in Theorem 2, the

optimal error exponent in (8) must be no smaller than
that in (10). This is verified simply by noting that for
every i, j, 1 ≤ i < j ≤M, it follows from (2) that

C (µi (y)π (y′) , π (y)µj (y′))

= max
s∈[0,1]

− log
(∑
y,y′

(µi (y)π (y′))
s

(π (y)µj (y′))
1−s

)
≥ B (µi, π) +B (µj , π)

≥ min (2B (µi, π) , 2B (µj , π)) . (12)

Like in [2], an important consideration that we shall
use to gauge the performance of a universal test is uni-
versally exponential consistency. Specifically, a universal
test δ is termed universally exponentially consistent
if for every µi, i = 1, . . . ,M, µi 6= π, it holds
that α

(
δ,
(
{µi}Mi=1 , π

))
> 0. Although universally

exponential consistency seems like a strong condition,
it needs not ensure that

lim
M→∞

α
(
δ,
(
{µi}Mi=1 , π

))
> 0. (13)

Of course, it follows from (8) in Proposition 1 that (13)
is not possible for

(
{µi}i≥1 , π

)
such that

lim
M→∞

min
1≤i<j≤M

C (µi (y)π (y′) , π (y)µj (y′)) = 0.

(14)

A test that satisfies (13) whenever (14) does not hold
is said to enjoy universally asymptotically exponential
consistency.

Theorem 3. For every fixed number of outliers T > 1,
our proposed test δ in (5), (7) is universally exponen-
tially consistent. Furthermore, for every {µi}Mi=1 , π ∈
P(Y), µi 6= π, i = 1, . . . ,M , it holds that

α
(
δ,
(
{µi}Mi=1 , π

))
= min
S,S′⊂{1,...,M}
|S|=|S′|=T

min
q1,...,qM

∑
i∈S

D (qi‖µi) +
∑
j /∈S

D (qj‖π) ,

where the inner minimum above is over the set of
(q1, . . . , qM ) such that∑
i/∈S

D
(
qi

∥∥∥ 1
M−T

∑
k/∈S

qk

)
≥
∑
i/∈S′

D
(
qi

∥∥∥ 1
M−T

∑
k/∈S′

qk

)
.

Theorem 4. For every fixed number of outliers T > 1,
the error exponent achievable by our proposed test in
(5), (7) is lower bounded by

min
q ∈P(Y)

D(q‖π)≤ 1
M−T

(
min

i=1,...,M
2B(µi,π) + TCπ

)min
i=1,...,M

2B(µi , q) ,
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where Cπ , − log
(

min
y∈Y

π(y)
)
<∞.

Furthermore, the proposed test enjoys universally
asymptotically exponential consistency. In particular, as
M → ∞, the error exponent achievable by our test in
(5), (7) converges as

lim
M→∞

α
(
δ,
(
{µi}Mi=1 , π

))
= lim
M→∞

min
i=1,...,M

2B (µi, π) ,

which is the limit of the achievable error exponent when
the typical distribution is known.

When all outlier coordinates are identically dis-
tributed, i.e., µi = µ 6= π, i = 1, . . . ,M, our test is
asymptotically efficient by which it means that

lim
M→∞

α (δ, (µ, π)) = 2B (µ, π) , (15)

which from Proposition 1, is equal to the optimal error
exponent when both µ and π are known.

IV. MODELS WITH UNKNOWN NUMBER OF
OUTLIERS

In this section, we look at the case in which not all
hypotheses in S have the same number of outliers, i.e.,
there is uncertainty in the number of outliers in the
hypothesis testing problem.

A. Nonexistence of Universally Exponentially Consistent
Tests

We start with some cases in which it is impossible to
construct a universally exponentially consistent test.

Theorem 5. Under the assumption that all the out-
liers are identically distributed, for every hypothesis
set containing the null hypothesis, there cannot exist a
universally exponentially consistent test even when the
typical distribution is known.

When the outlier coordinates can be distinctly dis-
tributed, and when the typical distribution is known,
there cannot exist a universally exponentially consistent
test even when the null hypothesis is excluded, i.e., there
are always some outlier coordinates (regardless of the
hypothesis).

B. Models with Positive Number of Identical Outliers

We now consider the case not covered in Theorem 5,
i.e., when the null hypothesis is excluded and all outlier
coordinates are identically distributed. In particular, we
show that in this case, it becomes possible again to
construct a universally exponentially consistent test.

1) Proposed Universal Test: Following the general-
ized likelihood principle similar to as in [2] but now
with the assumption of identical outliers being taken
strictly, the negative of the generalized log-likelihood
of yMn corresponding to an outlier subset S ∈ S for

the completely universal setting, denoted by Ū univ
S (yMn),

can be shown to be equivalent to

Ū univ
S (yMn)

,
∑
i∈S

D

(
γi

∥∥∥ ∑k∈S γkT

)
+
∑
j /∈S

D

(
γj

∥∥∥ ∑k/∈S γkM−T

)
, (16)

and our universal test can be described as

δ(yMn) = argmin
S∈S

Ū univ
S (yMn). (17)

2) Universally Exponential Consistency of the Pro-
posed Test:

Theorem 6. Under the assumption that all the outliers
are identically distributed, for every hypothesis set ex-
cluding the null hypothesis, our proposed test in (16),
(17) is universally exponentially consistent.
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