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Abstract—We study the problem of decentralized spectrum
sensing in the presence of selfish secondary users. We employ
diffusion strategies to guide the estimation process and a rep-
utation mechanism to encourage secondary users to participate
in the sharing of information. Simulation results illustrate the
performance of the proposed technique for spectrum sensing over
cognitive radios.

I. INTRODUCTION

Cooperative spectrum sensing by secondary users (SUs) in

a cognitive radio scenario can help avoid interference with

transmissions by the primary user (PU) [1]. Spectrum sensing

can be implemented either in a centralized manner [2] or

decentralized manner [3] through coordination among the SUs.

The latter approach exploits the spatial diversity of the SUs

more fully and is scalable and robust, while the centralized

approach is vulnerable to failure by the fusion center. The

cooperative spectrum sensing problem generally involves a

parameter estimation step. Various distributed strategies exist

for the decentralized solution of estimation problems, most

notably the consensus strategy [4]–[7] and the diffusion strat-

egy [8]–[10]. It has been shown in the prior work [11]

that diffusion strategies have superior convergence, stability,

and mean-square-error performance. For this reason, we shall

employ diffusion adaptation to estimate the parameters of

interest.

In collaborative spectrum sensing, it is not difficult to

envision situations where some SUs may behave in a selfish

manner and would participate in the sharing of information

with other SUs only if this activity is beneficial to them.

One example of such a scenario is studied in [12] where

the SUs operate with the intention of maximizing their own

transmission rates under the constraint of limited interference

to the PUs. Other scenarios are studied in [13]–[15] using

coalitional game formulations. In this paper, we examine the

decentralized spectrum sensing problem in the presence of

selfish SUs. We assume that the sharing of information among

neighboring SUs entails some communication cost. In this

way, each SU becomes interested in minimizing the error in

estimating the parameter of interest to enable enhanced spec-

trum sensing (this objective favors cooperation) while reducing

the cost of communicating with neighbors (this objective

disfavors cooperation). We explained in [16] that under similar

scenarios involving information-sharing games, the dominant
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strategy for each user is not to participate in the sharing of

information. In order to address this inefficient behavior, we

embedded a reputation mechanism from [17] into the design

of an adaptive collaborative process and developed a scheme

that encourages users to cooperate. We show in this article

how a similar design strategy can be developed for online
cooperative spectrum sensing and leads to enhanced detection

performance. In comparison to the framework in [16], here we

to formulate a decentralized detection mechanism to guide the

cooperation step.

Notation: We use lowercase letters to denote vectors and
scalars, uppercase letters for matrices, plain letters for deter-

ministic variables, and boldface letters for random variables.

All vectors in our treatment are column vectors, with the

exception of the regression vectors, uk,i.

II. SYSTEM MODEL

We consider a network with N secondary users (SUs) and

one primary user (PU). The frequency spectrum is divided into

M sub-bands and the signal powers over these sub-bands are

collected into a column vector wo with nonnegative entries.

The channels between the PU and the SUs are assumed to

be frequency-selective and time-variant as follows. For each

sub-band, and at each time instant i, the channel power gains
from the PU to the k−th SU are represented by a 1 × M
vector uk,i ∈ R

1×M
+ with non-negative entries. We assume

that the channel information uk,i, which is a realization for

the random process uk,i at time i, can be estimated through
pilot signals during a training phase [18], [19]. During each

i-th time interval, each SU k measures the received power
that results from the aggregation of the signal powers in wo

multiplied by the channel power gains in uk,i. We denote

the received power by sk(i). This measurement is generally
subject to noise and we write in a manner similar to [3]:

sk(i) = uk,iw
o + v′

k(i) (1)

where v′

k(i) combines the receiver and measurement noise
sources and is assumed to have mean v̄k and variance σ2

v,k.

We assume the random processes uk,i and v
′

�(j) are spatially
and temporally independent over k, �, i and j. To sense the
spectrum, each SU solves a detection problem of the form:{

H0 : wo = 0
H1 : wo = ws (2)

where ws ∈ R
M×1
+ represents the spectrum pattern that results

from the presence of the PU. We assume that wo varies slowly

over time. We further assume that v̄k is known by each SU,
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so that the data model can be centered as:

dk(i) � sk(i)− v̄k = uk,iw
o + vk(i) (3)

where vk(i) = v′

k(i) − v̄k represents the centered zero-mean
noise process.

We shall adopt a simple collaborative strategy for estimating

wo from the streaming data {dk(i),uk,i}. In particular, we
shall assume that the SUs are randomly paired. For example,

when SUs k and � are paired and SU � agrees to collaborate
with SU k, then SU k will update its estimate of the parameter
vector wo according to the following Adapt-then-Combine

(ATC) diffusion strategy [8]–[10]:

ψk,i = wk,i−1 + μuT
k,i[dk(i)− uk,iwk,i−1] (4)

wk,i = αkψk,i + (1− αk)ψ�,i (5)

where μ is a positive step-size factor, which is assumed to be
sufficiently small to ensure mean-square stability. The second

step (5) uses a coefficient 0 ≤ αk ≤ 1 to combine the
intermediate estimates of SUs k and �. Using results from [10],
it can be verified that a sufficiently small step-size μ ensures
asymptotic mean stability of wk,i in (4)–(5), i.e.,

Ew̃k,i → 0 as i → ∞ (6)

in terms of the error vector w̃k,i � wo − wk,i. We could

consider incorporating an additional projection step following

(5) to ensure that all entries of wk,i are non-negative. How-

ever, such a step generally leads to biased estimates for wo.

In this article, we continue with the unbiased solution that

results from (4)–(5). The simulation results in the last section

illustrate how this construction leads to good performance.

When SUs k and � are paired together, we assume that
they share the noise variances σ2

v,k and σ2
v,�, and the channel

realizations uk,i and u�,i. Using this reference knowledge, SU

� will decide, according to the procedure described further
ahead in (28)–(31), on whether to share its information ψ�,i

with SU k at time i, and vice-versa. The decision to cooperate
by either SU is based on each one of them evaluating a certain

performance metric, described in the next section, and which

reflects how well cooperation may enhance their detection

accuracy against the communication cost. If SU � decides not
to share estimates, αk in (5) is set to 1. For each SU �, sharing
the estimates ψ�,i bears a known positive transmission cost c.

III. PERFORMANCE METRIC

A. Detection Performance
Let us denote by EMSEk,i the instantaneous excess-mean-

square-error of SU k at time i conditioned on the known
realization uk,i. This quantity is defined as

EMSEk,i � E[|uk,iw̃k,i−1|
2|uk,i = uk,i] (7)

which we rewrite as:

EMSEk,i = E|uk,iw̃k,i−1|
2 ≥ 0 (8)

Smaller values for EMSEk,i correspond to enhanced estima-

tion accuracy. The analysis that follows explains how smaller

values for EMSEk,i enhance the detection accuracy as well.

We reconsider the detection problem (2) by examining the

statistics of the random variable uk,iwk,i−1, which can be

interpreted as an estimate for the received signal power. For

small step-sizes and after sufficient iterations, the iterated

wk,i−1 approaches wo with a small mean-square error. We

therefore approximate the mean of uk,iwk,i−1 by

Euk,iwk,i−1 ≈ uk,iw
o (9)

Likewise, the variance of uk,iwk,i−1 is approximated by:

Var(uk,iwk,i−1) � E|uk,iwk,i−1 − E(uk,iwk,i−1)|
2

≈ E|uk,iw̃k,i−1|
2 = EMSEk,i (10)

Thus, after a sufficient number iterations, we can replace the

detection problem in (2) by{
H0 : E(uk,iwk,i−1) ≈ 0
H1 : E(uk,iwk,i−1) ≈ uk,iw

s (11)

Now each SU k will decide on H0 or H1 by comparing the

statistics uk,iwk,i−1 with a threshold:

uk,iwk,i−1
H0

≶
H1

ηk,i (12)

We consider the Neyman-Pearson test in which the threshold

ηk,i is chosen to maximize the detection probability under a
constraint on the false-alarm probability, namely,

max
ηk,i

PDk,i � Pr{uk,iwk,i−1 ≥ ηk,i;H1}

subject to P FAk,i � Pr{uk,iwk,i−1 ≥ ηk,i;H0} = κ
(13)

We note that other than the mean and variance, the statistics of

uk,iwk,i−1 are generally unknown. Therefore, the optimiza-

tion problem (13) cannot be solved explicitly. To continue,

we assume that the probability distribution of uk,iwk,i−1 is

symmetric around the mean under both H0 and H1. With this

assumption, we can utilize Chebyshev’s inequality to ensure

that an upper bound on P FAk,i is smaller than κ. Thus, note that

P FAk,i = Pr{uk,iwk,i−1 ≥ ηk,i;H0}

=
1

2
Pr{|uk,iwk,i−1| ≥ ηk,i;H0}

≤
EMSEk,i

2η2k,i
(14)

Therefore, in order for (14) to be bounded by κ, the threshold
should be selected to satisfy:

ηk,i ≥

√
EMSEk,i

2κ
(15)

Likewise, we maximize a lower bound on PDk,i. Thus, note
again that using the assumed symmetry of the distribution of

uk,iwk,i−1, we obtain

Pr{uk,iwk,i−1 ≤ ηk,i;H1}

=
1

2
Pr{|uk,iwk,i−1 − uk,iw

s| ≥ uk,iw
s − ηk,i;H1}

≤
EMSEk,i

2(uk,iws − ηk,i)2
(16)

where we assume uk,iw
s > ηk,i in the second equality.

This assumption is reasonable in most environments when

the signal power uk,iw
s is sufficiently large, which means

sufficiently high signal-to-noise ratio (SNR). Then,

PDk,i = Pr{uk,iwk,i ≥ ηk,i;H1}

= 1− Pr{uk,iwk,i−1 ≤ ηk,i;H1}

≥ 1−
EMSEk,i

2(uk,iws − ηk,i)2
(17)
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Therefore, the optimization problem (13) is approximated and

replaced by

max
ηk,i

P̄Dk,i � 1−
EMSEk,i

2(uk,iws − ηk,i)2

subject to ηk,i ≥

√
EMSEk,i

2κ

(18)

Under the assumption ukw
s > ηk,i, the objective function

P̄Dk,i is monotonically decreasing with respect to ηk,i. Thus,
the solution to (18) occurs at

ηok,i =

√
EMSEk,i

2κ
(19)

and the resulting P̄Dk,i is

P̄ o
k,i = 1−

EMSEk,i

2

(
uk,iws −

√
EMSEk,i

2κ

)2 (20)

It can be verified that P̄ o
k,i increases when EMSEk,i decreases.

B. Combined Cost Function
It follows that SUs should be motivated to cooperate in

order to enhance the estimation accuracy and the detection

probability. However, as shown in [16], the cost of sharing

information discourages selfish agents from sharing data un-

less these agents are enticed to become willing participants.

We can achieve this condition by employing an adaptive

reputation mechanism whereby selfish SUs are dynamically

rated according to their willingness to cooperate with other

SUs. By doing so, a dynamic reward/punishment mechanism

is incorporated into the cooperative process in order to enhance

the performance of spectrum sensing.

To explain the procedure, we denote the action of SU k
at time i by ak(i), where ak(i) = 1 means “to share”
information with neighbor � and ak(i) = 0 means “not
to share” information. With each SU k, we associate an
instantaneous combined cost, Jk,i, that takes into account the
cost of communication and the predicted estimation benefit for

user k, which is a function of the actions by both SUs. Since
the action a�(i) affects the resultingwk,i in (5), and thus w̃k,i,

we use E[EMSEk,i+1] to represent the predicted estimation
accuracy. Thus, given the current state estimate wk,i−1, the

expression for Jk,i is defined as follows:

Jk,i(ak(i),a�(i)|w̃k,i−1)

� E[EMSEk,i+1(a�(i)|w̃k,i−1)] + ak(i) · c (21)

Expressions for E[EMSEk,i+1] for both cases of a�(i) = 0
or a�(i) = 1 can be derived in a manner similar to [16];
this step is unnecessary for the discussion in the remainder of

this article and will be skipped. It was argued in [16] in the

broader context of parameter estimation, where it was shown

that, if left attended, the dominant strategies for all SUs is

not to share information, i.e., to set ak(i) = 0 for all k. This
situation arises because SUs do not have a mechanism in place

to predict what the actions of their neighbors will be.

One way to encourage SUs to cooperate is to associate a

dynamic reputation score with each SU. Users that cooperate
are rewarded with higher scores and users that do not cooper-

ate are penalized with lower scores. Under these conditions, it

becomes important for users to be able to assess the long-term

benefit of their decisions to cooperate or not. For this purpose,

SUs need to be foresighted and minimize instead a discounted

long-term cost of the form:

min
ak(i)

J∞

k,i [ak(i)] � (22)

∞∑
t=i

δt−i
E[Jk,t(ak(t),a�(t)|w̃k,t−1)|w̃k,i−1,ak(i) = ak(i)]

where the discount factor δ ∈ (0, 1) models the probability
that SUs leave the network in the future, and the expectation

is taken over the random processes w̃k,t−1, and a�(t), condi-
tioned on w̃k,i−1 and ak(i).

IV. ADAPTIVE REPUTATION DESIGN

A reputation design mechanism proposed in [16], [17] can

be used to encourage cooperation and to approximate the

solution to (22). Readers may refer to [16] for more details.

We summarize the construction as follows.

Each SU k maintains a reputation score, θ�
k,i, for any

potential neighbor �. This scalar score assumes values in the
range (0, 1) and its value reflects a summary of the history of
SU �’s actions as viewed by SU k at time i. The reputation
update rule takes the following form:

θ�
k,i+1 = rθ�′

k,i + (1− r)a�(i) (23)

where 0 < r < 1 controls the updating rate of the reputation
scores which are constrained to be higher than a threshold ε
to avoid losing the adaptability so that

θ�′

k,i = max{θ�
k,i, ε} (24)

for a small positive coefficient ε < 1. The arguments in [16]
show that such reputation scores can be used by SU k to
predict SU �’s future behavior in the following manner:

P(a�(t) = 1) ≈ θ�
k,t · θ

k
�,t, t ≥ i (25)

Therefore, SUs would try to maintain their reputation scores

high in order to be rewarded with cooperation from other SUs

when cooperation is beneficial to them.

It is clear that determining the optimal action-choosing pol-

icy of (22) requires prediction of the future. However, the fu-

ture estimation errors are unavailable and evolve dynamically.

The following approximations can be used to approximate the

future status for t > i:

w̃k,t−1 ≈ w̃k,i−1, θ�
k,t ≈ θ�

k,i, uk,t ≈ uk,i (26)

As a result, it is reasonable to predict the future actions as

ak(t) ≈ ak(i) (27)

The optimal action-choosing policy can be solved under as-

sumptions (26) and (27) to obtain the threshold rule [16]:

ak(i) =

{
1, if γk,i �

bk,i

c
> 1−rδ

δ(1−r)θ�
k,i

0, otherwise
(28)

where

bk,i � (1− α2
k)skk(i)− (1− αk)

2s� (29)

skk(i) � w̃∗

k,i−1u
T
k,iuk,i(I − 2μuT

k,iuk,i)w̃k,i−1 (30)

s� �
μσ2

v,�‖u�,i‖
2

2
(31)
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Fig. 1: (a) Spatial distribution of the PU and SUs. (b) The spectrum pattern
ws and the average of estimates wk,750 over all SUs at i = 750.
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Fig. 2: The PU is active during i ∈ [0, 1000) and i ≥ 2000. (a) EMSE
learning curve under different cooperative scenarios. (b) Evolving probability
of detection under different cooperative scenarios.

We use the following instantaneous approximation for the

quantity w̃k,i−1 that appears in the above expressions:

w̃k,i−1 ≈ ŵo
k,i −wk,i−1 (32)

where

ŵo
k,i = (1− νk)ŵ

o
k,i−1 + νkψk,i (33)

and 0 < νk < 1 is a positive forgetting factor. At each
time instant i, each SU k can use this estimated w̃k,i−1 to

approximate EMSEk,i ≈ |uk,iw̃k,i−1|
2 which is then used to

determine the threshold ηok,i in (19) and to detect the spectrum
status H0 and H1 in (12).

V. SIMULATION RESULTS
In the simulations, we assume there are N = 15 SUs. The

locations of the PU and SUs are shown in Fig. 1(a). The PU is

initially active at time i = 0, becomes inactive at i = 1000, and
becomes active again at i = 2000. We assume that the SUs are
randomly paired at each time instant. The spectrum pattern of

ws with ‖ws‖ = 1 is represented by M = 16 samples and is
illustrated in Fig. 1(b) along with the estimated wk,i averaged

across all SUs after sufficient iterations. The channel power

gain uk,i between the PU and each SU is assumed to be a

constant path loss gain with a random disturbance:

uk,i = gp,k1+ gk,i (34)

where the notation 1M denotes a vector with all its entries
equal to one, gp,k = KL · (rk/r0)

−2
, KL = 0.1 is a path-

loss parameter, r0 = 1 is a reference distance, and rk is the
distance between the PU and the k-th SU. The disturbance gk,i
is a zero-mean Gaussian random vector with covariance matrix

1.5I . The measurement noise v′

k(i) is temporally white and
spatially independent Gaussian distributed with mean v̄k = 0.1
and uniform variance σ2

v,k = σ2
v = −10 (dB). We set the

step-size to μ = 0.005, the transmission cost to c = 10−6, the

discounted parameter to δ = 0.99, the minimum reputation

ε = 0.1, and the combination coefficients αk = 1/2 for all
SUs when the shared estimates are available. All reputation

scores are set to 1 at time i = 0 and discounted by r = 0.7.

In Fig. 2(a), the average EMSE over all SUs is simulated.

Without the reputation scheme, the selfish SUs have no in-

centive to cooperate and their learning curve attains the worst

EMSE performance. On the other hand, the reputation scheme

encourages cooperation by selfish SUs and leads to better

estimation performance. In Fig. 2(b), we simulate the detection

performance in terms of the average PDk,i over all SUs. The
threshold is determined by (19) and (32). The upper bound

probability κ is 0.1.
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