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Abstract—Particle filtering methods aim at tracking probabil-
ity distributions sequentially in time. One of the main challenges
of these methods is their accuracy in high-dimensional state
spaces. Namely, it can be shown that if the dimensions of these
spaces are sufficiently high, the obtained results by particle
filtering are practically useless. In this paper, we propose an
approach for addressing this problem. It is based on breaking the
high-dimensional distribution of the complete state into smaller
dimensional (marginalized) distributions and attempting to track
these distributions in a novel way as accurately as possible. We
demonstrate the proposed approach with computer simulations.

I. INTRODUCTION

Particle filtering (PF) is a methodology that aims at se-
quential tracking of distributions of interest that arise in state
space models [1], [2]. This methodology is particularly popular
due to its capacity to handle nonlinearities and non-Gaussian
distributions. With PF the distributions are approximated by
simulated samples (particles) of the unknown parameters or
states and by weights assigned to the particles. The estimated
distributions provide more information about the latent states
than just point estimates of the states. Once a set of particles
and weights are available, the end-user can construct various
desired estimates and confidence intervals. Furthermore, one
can use the particles and the weights to conduct tests or to
choose models.

An important problem of PF is its quick deterioration in
performance when the dimension of the state space becomes
large. For example, it has been observed that the method when
applied to high-dimensional geophysical data can collapse
after a very few steps [3]. The poor performance of PF in
high-dimensional spaces has also been discussed in [4]. In [5],
it was shown that when the particle size is sub-exponential in
the cube root of the system dimension, the maximum weight
of the particles tends to one.

The root of the problem is easy to explain. Since PF is
about intelligent exploration of the space of unknown states
by sampling randomly from that space, it is obvious that it
becomes increasingly difficult to draw good particles as the
dimension of the space grows. We demonstrate it by a very
simple example. In Fig. 1 on the left, we present the results
of sampling from a uniform distribution on (0,1). Suppose
that the set of interest is the interval (0.4, 0.6), which is a
priori unknown. If the number of generated samples is M, the
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expected number of samples in the desired interval is 0.2M.
In the middle figure we see the results of sampling in a two-
dimensional space, where now the two random variables x
and y are independently sampled from uniform distributions
on (0,1). Let now the region of interest be the square on the
plot whose sides are equal to 0.2. This time the number of
expected samples in the region of interest is 0.04M/. Finally,
the plot on the right side shows the outcome of sampling in
a three-dimensional space and where the set of interest is the
plotted cube with sides equal to 0.2. This time, the expected
number of good samples is only 0.008M. In general, if the
dimension of the space is d, the expected number of good
samples is 0.2¢M. Clearly, with increased d, it becomes very
difficult to get samples from regions of interest from the state
space. In the PF context, the desired region is where the
posterior is high, and this posterior often gets very peaky in
high-dimensional problems, which is why the propagation of
particles to important areas is very challenging and often fails.
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Fig. 1. Sampling in spaces of different dimensions.

High-dimensional problems appear in various areas. In
geophysical systems such as the atmosphere or the oceans,
the state spaces are large [6] and often include more than one
million variables [7]. An approach that attempts to keep the PF
away from divergence employs backtrack PF, which is based
on going back to the time when the weights of the particles
showed low weights and on reprocessing the data [8]. Another
approach is based on merged PF where at the measurement
times, linear combinations of particles are taken in order to
reduce the variance of the particle weights [9]. Computer
vision is also an area where high-dimensional state spaces are
rampant. There, one direction for tackling the problem is by
partitioned sampling [10]. The underlying idea is to apportion
the state space and exploit a decomposition of the dynamics
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of the states. For example, recently in [11], the problem of
tracking human activity from video sequences was addressed
based on ideas from [10] and using hierarchical particle filters.

In our own previous efforts, we proposed the concept of
multiple particle filtering (MPF) in [12] and [13]. There, the
state space is partitioned into subspaces and in each subspace
the tracking is performed by separate particles filters. The
particle filters exchange the estimates of their states with other
particle filters, which are used for particle propagation in the
subspaces and for computation of the particle weights. It has
been reported that the MPF performs very well in a real time
setting of device-free tracking [14], [15], in cognitive radar
networks [16] and in automated tracking of sources of neural
activity [17].

In this paper, we further investigate the concept of MPF and
propose a novel class of such filters. Rather than exchanging
point estimates or higher order moments, a particle filter
uses particles from other particle filters that are necessary to
carry out its operations of particle propagation and weight
computation. It is important to note that the complexity of
the proposed method grows linearly with the number of
particle filters in the system. We demonstrate the improved
performance of the filter with computer simulations.

II. PROBLEM FORMULATION

Let a dynamical system of interest be represented by the
following state space model:

vy = folmio1,ug), state equation (D

Y = fy(l'tv’ut)v

where t = 0,1,2,--- represents time index, z; € R% is
the latent state of the system at time instant ¢, y; € R%
are observations made about the system at time instant ¢,
fx(+) and f,(-) are functions that can be nonlinear in their
arguments, and v; € R% and u, € R% are noises in the state
and observation equations, respectively. The dimensions of x;,
Yt Ut, and vy are d, dy, d,,, and d,, respectively. The noise
distributions of u; and v; are parametric and known (where
the parameters of the distributions may not be known).

Based on the given model and the observations y;.;, the
general objective is to extract complete information about
the latent state z;. More specifically, the goal is to estimate
p(¢|y1:+), which is the filtering distribution of z;. This has
to be done sequentially where p(z|y1.;) is computed from
p(x1—1]y1.1—1). Related goals are to find the joint distribution
p(zo:t|y1.¢), or the predictive distributions p(z¢4.|y1.¢) and
P(Yt+r|y1:t), T > 0, or the smoothing distribution p(zt|y1.7),
where t < T

The emphasis here is on solutions of these problems when
d, is large. In this paper, we will discuss the case of filtering
distribution. The proposed solution can be used similarly for
estimating the predictive and smoothing distributions.

observation equation (2)

III. PARTICLE FILTERING IN HIGH-DIMENSIONAL SPACES

We propose that we decompose the state space into sub-
spaces of small dimensions and run one particle filter on each

subspace and thereby have the particle filters operate in lower
dimensional spaces. In mathematical terms, the space of xy,
Q,, is partitioned into n subspaces, Qg ,, ¢ = 1,2,---,n,
where U?_Q,,, = Q, and Q,,, N Qy,, = 0, for i # j,
i,7 = 1,2,--- ,n. We intend to estimate sequentially the
marginal filtering distributions, p(z; ¢|y1:¢), ¢ = 1,2,--- ,n.
Thus, with this approach we give up the goal of getting the
full filtering distribution of the states and instead settle for
tracking a set of marginalized filtering distributions.

At each time instant, the procedure is composed of several
steps. They include (a) exchanges of a subset of particles from
the most recent filfering random measures among relevant
particle filters, (b) propagation of particles, (c) exchanges
of particles from the current predictive random measures
among relevant particle filters, (d) weight computation, and
(e) resampling. A pictorial diagram with two particle filters
is shown in Fig. 2. In this scheme, a particle filter has a full
access to all the particles and weights of the particle filters
needed for its particle propagation and weight computations.
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Fig. 2. The new multiple particle filter.

There are two crucial steps in the implementation of the
method. The first is the propagation of the particles for the
next time instant and the second is the computation of the
weights of the propagated particles. Next we describe them in
detail.

Suppose that at time ¢ — 1 the filtering random measures of
each of the particle filters are given by

_(m)
Xijt—1 = {2, 1,0

where the 2" s are the particles and w'""” s are the weights

of the ith filter, and M is the total number of particles.
We allow that each of the particle filters makes its measure
available to the particle filters that need it. Let the ¢th particle
filter for propagation of its particles use an instrumental
function ﬁ(xi7t\x§?ll, y1.¢t). One choice of this function is the
marginal predictive distribution,

(m) \M
it—1Sm=1>

i:]_727...7n’

p(xi,t|$§-?jl,y1:t>
= fp(%ﬂxlell, T1¢—1y""" s Li—1,4—1,Ti+1,6—1y"""
X p(x14—1, - 7xn,t—1|y1:t—1)dx1,t—l coedap -1,

’ xn,tfl)

3)
which means that the ¢th particle filter has to integrate out
all its nuisance states (the ones that it is not tracking but are
needed for propagation). Note that in (3) we formally assume
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that for the propagation of ! t 1, we need particles of all the
other states. In the followmg, we use the approximation

P($1,t71, oy Xg—1,t—15 Lit1,t—1, " " vxn,t71|y1:t71)
~ n
~ Hk:l,k;ﬁip(xk,tfllyl:tfl)-

There are several ways to proceed. Here we present one.

For each sampled 9[7@('7?)1 for propagation, we generate .J

particles x(m’] ), j=1,2,--,J. We do this by first randomly
drawing the 1ndlces of the particles from the other state spaces
according to their respective weights, and then using them for
regular particle propagation. Since each :17(7:) , has J children,
we end up with M x J particles. The obtained particles and
weights (all equal) represent the predictive random measure.
The next step is the computation of the weights for the
generated particles x(mj ). With this step one evaluates the

“4)

weights wg’t ™3) by

E;’%J) x p(y ‘I("L’j)). (5)

This expression is due to the fact that the instrumental dis-
tribution is the same as the transition distribution. Again, the
computation in (5) requires integration because the observa-
tions are, in general, functions of states that are tracked by
other particle filters, i.e.,

J)

w

(yt\%T ayl t—1)
= [p( yt|902 ¢ m.d) STt Ti 1ty Tip 1oty s Tyt)
XP(X1yty o s Tim 1ty Tig 1yt > Tt Y1ee—1)dT1 e - - diﬂné
(6)

We approximate the evaluation of the integral in (6) by
drawing particles L times from the predictive measures of the
other filters and evaluating the average likelihood of x(m’] ) by

(m.g) 4 (m,J) (>\1 0
wi,t L Zp Yt ‘I P

where A, is the 1ndex of the [th particle from the rth random
measure.

There is one more step and its objective is to bring the
number of M J particles back to M so that we finally obtain
the filtering distributions at time ¢. This is readily achieved by
resampling. In one ap roach one draws the M particles by
using their weights w;’;” ) and in another, one samples one
particle from each set of children (there are M such sets).
With the former resampling, the particles have equal weights
and with the latter, they are different. The surviving particles
and their weights are used to form p™ (z; 4|y1.,).

()‘n 1) ) (7)

IV. SIMULATION RESULTS

In this section we present results for a system whose state
space dimension is d; = 30. In particular, we considered a
system with the following state equations:

T, 8Bx1 -1+ 2Tq, 1—1 + ULt
Toy = 8Toi—1+ .21 4—1 + U2y
Tg,t = 8Tq, -1+ .2Tq,—1,t-1+ Ud, ¢, 8

where u;;,% = 1,---,d, are independent and identically
distributed zero-mean Gaussian perturbations with variance
012“ = 1. For simplicity, we assumed that there was one
observation per state. The observations were highly nonlinear
with respect to the states and given by

Ti,t

Yig =€ 2

7::17"'7dx7 (9)

Vit

with v; ; denoting independent zero-mean Gaussian random
variables with variance 02 = 1.

We let the system evolve for T = 60 time units and we
compared the following algorithms:

e The standard PF (SPF) that generated 600 particles of
dimension 30. We denoted this filter as SPF 1x600x1,
where the first number denotes the number of filters (in
this case one), the particles per filter (M = 600), and the
number of children in the propagation step (J = 1).

o The SPF that generated 600 x4 particles of dimension 30.
This meant that for each of the 600 particles we drew
J = 4 children and later we resampled the set of 2400
particles back to 600 particles. We denoted this filter as
SPF 1x600x4.

e The MPF from [12] where we used 30 filters and for each
of them generated 20 particles of dimension 1. To deal
with the coupling of the states given in (8), the filters
exchanged the means of their particles that were used
in the corresponding instrumental function. Therefore,
all the particles of a given filter were propagated using
the same information (mean) from the coupled state. We
denoted this filter as MPF 30x 20X 1. We point out that
this filter uses the same amount of particles as the first
SPF, a total of 600. However, in order to obtain the
approximation of the marginal distribution of a particular
state, it only uses 20 particles.

o The MPF that used 30 filters and where each of them
generated 600 particles of dimension 1. As in the pre-
vious MPF, the individual filters again exchanged the
means of their particles. We denoted this filter as MPF
30x600x1. The rationale for using 600 particles per
filter was to compare it to the first SPF, as the latter
uses 600 particles for its approximation of the marginal
distribution of a given state.

o The new MPF that used 30 filters, each of them operating
with 20 particles of dimension 1 but with 4 generated
children per particle. At each step, the number of particles
per filter was brought back to 20 using resampling. For
the propagation of its own particles, a given particle filter
used 4 particles from a filter responsible for the needed
state for the propagation. The required particles from the
other filter were obtained by resampling. Note that this
filter does not need to apply (7) because the observation
equations are decoupled. We denoted this filter as New
MPF 30x20x4.

Figure 3 shows the average mean square error (MSE) of
all the states calculated from 500 realizations of the system.
It is obvious that the traditional PF suffers from the large
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Fig. 3. Average MSE comparison of the different methods.

dimension of the state. Even the improvement obtained by
generating 4 children per particle is insufficient to reach
the performance of the most basic MPF. We note the large
difference in performance between the SPF 1x600x1 and
the MPF 20X 30x1 when the latter only uses 20 particles per
filter to approximate the marginals. The comparison clearly
shows that the best performance was obtained by the newly
proposed MPF. We emphasize that this performance was
achieved by only 20 particles per filter.
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Fig. 4. Average MSE comparison of various implementations of the new
MPF.

In Figure 4 we compared different parameter combinations
for the new MPF in terms of number of particles per individual
filter and number of children generated per particle. The
experiment was run 100 times. For the stated 30-dimensional
problem, we observe that if we dramatically decrease the
number of particles per filter (M = 4), there will be a big
loss in performance. However, New MPF 30x20x4 from
the previous experiment had almost as good performance as

the other new MPFs that used either more particles or more
children or both.

V. CONCLUSION

We have addressed a particle filtering methodology for
problems where the state space is of high dimension. We
proposed to break the space into subspaces and to perform
separate particle filtering in each of the subspaces. The two
critical operations of particle filtering, the particle propagation
and weight computation of each particle filter are performed
wherever necessary with the aid of particles from other sub-
spaces. The proposed method was demonstrated by computer
simulations. The obtained results are promising and encourage
further study of the method.
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