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Abstract—We consider distributed detection of an orthogonal
frequency-division multiplexing (OFDM) random source using
a cooperative set of sensors. Assuming that the observations
of different sensors are independent, we derive/propose several
frequency-domain detectors: the Neyman-Pearson detector for
known SNRs and noise variances and three generalized likeli-
hood ratio detectors for unknown SNRs and/or noise variances
assuming that the transmit power is either uniformly allocated to
all the subcarriers or not. Our theoretical analysis matches our
simulation results and show that the proposed detectors, despite
their lower computational complexity, outperform the state-of-
the-art time-domain detectors in practical cases.

I. INTRODUCTION

In distributed detection, multiple sensors cooperatively
detect the presence or absence of a signal source. To this end,
sensors transmit a summary of their observation to a Fusion
Center (FC), where a global decision is made. In contrast,
sensors in the centralized counterpart, transmit all the raw
observations to the FC [1]. We assume that the observations
of different sensors are independent, and consider distributed
detection of an orthogonal frequency-division multiplexing
(OFDM) source signal in such a system. Developing efficient
detectors for OFDM systems using distributed sensors is of
great importance. For instance, in cognitive radio network,
it is crucial to efficiently detect the presence of the primary
users that employ OFDM. As another example, detection of
OFDM systems makes heterogeneous communication system
possible, wherein several OFDM users such as LTE and WiFi
can coexist. Here, we design efficient OFDM signal detectors
with low complexity and evaluate the impact of the parameters
of the source and sensors on the detection performance.

Several methods are proposed to obtain summaries for dis-
tributed detection. For instance, it is proposed to transmit the
energy [2] or the likelihood ratio [3]–[5] of the received signal
to the FC. Employing sub-optimal techniques, the FC then
combines the reported summaries to make a global decision.
To detect the OFDM signals, the inherent correlation of the
OFDM symbols can be exploited. For instance, several time-
domain detectors are proposed in [6], [7] that use computation-
ally expensive algorithms to exploit such correlation. In this
paper, we consider distributed detection of an OFDM source
signal in frequency-domain with imperfect synchronization in
two cases: 1) stationary channel: the channel responses remain
unchanged over the entire detection interval, 2) non-stationary
channel: the channel responses may vary over the detection
interval.

In time-domain, the cyclic prefix in the OFDM signal cre-
ates cyclo-stationary feature in the signal. To use this feature,

autocorrelation of the received signal can be used for detection.
The time-domain detectors in [6], [7] are computationally
demanding since the distribution of OFDM symbols with
imperfect synchronization in time-domain is rather complex.
It is proven in [8] that the distribution of OFDM symbols
in frequency-domain converges to a normal distribution as the
number of subcarriers increases. This result is general and does
not depend on the existence, length, and location of the cyclic
prefix in the OFDM symbols. Using this result, we derive
detectors that are robust to the synchronization mismatches (in
time and frequency) and have lower computational complexity
compared to the time-domain detectors.

In this paper, we first derive the Neyman-Pearson (NP)
detector Λ1 assuming known system parameters. In some
cases, the noise variance can be accurately estimated and is
known to the sensors in advance. For these cases, we propose
two new generalized likelihood ratio detectors (GLRDs): Λ2

and Λ3, where Λ2 assumes that the unknown transmit power
is uniformly distributed over all the subcarriers, whereas Λ3

makes no such an assumption. When the SNRs and noise vari-
ances are unknown, the GLRD Λ4 can be employed. Our novel
asymptotical analysis accurately evaluates the performance
of Λ4 as the number of temporal samples is large enough
in practice. We show that our proposed frequency-domain
detectors have lower computational complexity compared to
time-domain detectors and outperform some state-of-the-art
time-domain detectors in practical cases.

The Discrete Fourier Transform (DFT) of a vector x ∈ CK

is denoted by X = Fx, where [X]k =
∑K−1

n=0 xne
− 2πi

K
kn, k =

0, . . . ,K − 1 is the kth element of X . The inverse DFT
(IDFT) of X is denoted by x = F−1X , where [x]n =
1
K

∑K−1
k=0 Xne

2πi
K

kn, n = 0, . . . ,K − 1. The maximum likeli-

hood (ML) estimate of a parameter θ is also denoted by θ̂.

We introduce the system model in Section II and investigate
the NP detector in Section III. In Section IV-A assuming
uniform transmit power, we derive the GLRD for unknown
SNRs and known noise variance. We study GLRDs for two
cases: 1) known noise variances, and 2) unknown SNRs and
noise variances in Section IV-B and Section IV-C respectively.
In Section V, we numerically evaluate the proposed detectors.
We give our concluding remarks in Section VI.

II. SYSTEM MODEL

We assume M sensors aim to cooperatively detect the
presence of an OFDM source employing K subcarriers. We
assume that the sensors are not synchronized and observe
independent pieces of the same source in independent additive
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white normal noise. This can be guaranteed if 1) the carrier
frequency mismatch of the involved sensors are considerably
less than the bandwidth of one subcarrier, i.e., they observe the
same channel with no perfect synchronization, 2) the sampling
times of the sensors are not synchronized, however, their sam-
pling frequencies are (almost) identical, and 3) the sampling
times of the sensors are such that the source observations from
different sensors can be treated as independent.

Let {hm,n(l)}
Lc−1
l=0 denote the channel impulse response

between the source and m ∈ {0, . . . ,M−1}th sensor over the
n ∈ {0, . . . , N − 1}th time interval, where Lc is the channel
length. We assume that each sensor observes N discrete-time
sequences with length K from the same OFDM source. Let
Sn,k denote the frequency-domain OFDM transmitted symbol
at the kth subcarrier during the nth interval. The transmitter
computes the IDFT of the symbols, i.e., {F−1Sn,k}, adds the
cyclic prefix, and then transmits the result through the channel.
We assume that the sensors are not synchronized and the mth
sensor records the nth time interval of its received signal
with some unknown delay, and some small offsets in carrier
frequency and sampling rate. Therefore, the observed sequence
may contain samples from the nth and n+1st sets of OFDM
symbols. The sensors then take DFT of the K samples of the
recorded sequence to obtain {Ym,n,k}. For a perfectly synchro-
nized system it is known that Ym,n,k = Hm,n,kSn,k+Wm,n,k,
where Wm,n,k is a zero-mean complex normal noise with vari-

ance σ2
m, i.e., f({Wm,n,k}) =

∏
m,n,k

1
πσ2

m
exp−

|Wm,n,k|2
σ2
m

,

and Hm,n,k =
∑Lc−1

l=0 e−
j2πkl
K hm,n(l) is the channel gain

at frequency k. However for a unsynchronized system, with
received signal delay and time and frequency offsets, it is
proven in [8] that {Ym,n,k}

K−1
k=0 are uncorrelated and converge

in distribution to normal random variables as K increases.
Thus, we model the unconditional distribution of {Ym,n,k}

K−1
k=0

as a set of independent normal random variables with zero

mean and variances of Pk |Hm,n,k|
2
+ σ2

m. Obviously, it is
not accurate to approximate the conditional distribution of
{Ym,n,k} given the synchronization parameters and channel
conditions with a normal pdf.

III. OPTIMAL DETECTOR FOR KNOWN PARAMETERS

In this section, we derive the optimal NP detector assuming
that subband SNRs and noise variance are all known. The
performance of the optimum detector for this case is an
upper bound for any other system, and therefore is used to
assess other detectors. The NP detector compares the ratio of
the probability density functions (pdfs) of the observations
{Ym,n,k} under two hypotheses with some threshold. As
discussed in Section II, we assume that Ym,n,k has zero
mean complex normal distribution with variance σ2

m and
θm,n,k = σ2

m + |Hm,n,k|
2Pk, under H0 and H1 respectively,

i.e.,





f({Ym,n,k}|H1) =
∏

m,n,k

exp(−
|Ym,n,k|2

θm,n,k
)

πθm,n,k
,

f({Ym,n,k}|H0) =
∏

m,n,k

exp(−
|Ym,n,k|2

σ2m
)

πσ2
m

.

(1)

where H0 and H1 denote the absence and the presence
of the source signal respectively. It is easy to show that

f({Ym,n,k}|H1)
f({Ym,n,k}|H0)

H1

≷
H0

η̄1 can be rewritten as

Λ1 ,
∑

m,n,k

wm,n,k

Um,n,k

σ2
m

H1

≷
H0

η1, (2)

where Um,n,k = |Ym,n,k|
2, η1 = log(η̄1) +∑

m,n,k log(
θm,n,k
σ2
m

), and wm,n,k = 1−
σ2
m

θm,n,k
.

The detector Λ1 first spatially normalizes the observations
by dividing their norm by σ2

m. The assigned weight wm,n,k

to the normalized value is the ratio of the signal component
of the subband energy, i.e., |Hm,n,k|

2Pk, to the total subband
energy, θm,n,k. In addition, wm,n,k ∈ [0, 1] is an increasing

function of the subband SNR (defined as
|Hm,n,k|2Pk

σ2
m

), i.e.,

limSNR→0 wm,n,k = 0 and limSNR→∞ wm,n,k = 1.

Since the number of operations required to evaluate (2)
is dominated by a DFT (requiring an order of KN log2K
operations), Λ1 requires an order of KN log2K operations at
each participating sensor, which is fewer than that of the time-
domain NP detector proposed in [6], which requires an order
of K3N2 operations.

Under the stationary channel model, the channel impulse
response hm,n(l) remains static during the spectrum sensing
interval. This is in contrast to the non-stationary channel model
where the channel impulse response is constant only over the
duration of one observation interval, but varies from interval to
interval. Thus for the stationary channel model, the DFT of the
channel impulse response in (2) is constant over the spectrum
sensing interval and can be approximated as Hm,n,k ≈ Hm,k,
i.e., wm,n,k ≈ wm,k, and θm,n,k ≈ θm,k.

IV. GENERALIZED LIKELIHOOD RATIO DETECTORS

A. GLRD: Uniform Power Distribution and Unknown SNRs

We previously assumed that the subband SNRs and noise
variance are known. However in some cases the environment
has a fast changing dynamic and it is unreasonable to assume
the availability of the channel knowledge at the sensors.
Moreover, due to the fast dynamic of the channel, the OFDM
source cannot adapt to the channel variations and therefore
allocates its transmit power uniformly to the different sub-
channels. Here, we address the detection of such an OFDM
source, where the transmit power of subbands Pk are assumed
equal yet unknown. Without loss of generality, let the channel
gains Hm,n,k absorb the subband transmit power, i.e., Pk = 1.
Hence, to obtain the GLRD, we only need to find the ML
estimator (MLE) of |Hm,n,k|

2 by maximizing the pdf of the
observations f({Ym,n,k}|H1) in (1) with respect to |Hm,n,k|

2.
Note that since hm(n, l) = 0 for l ≥ Lc, the projection of
the IDFT of {|Hm,n,k|

2} is zero on some components, i.e.,

[F−1|Hm,n,k|
2]l = 0, Lc ≤ l ≤ K − Lc. Hence, ̂|Hm,n,k|2 is

the solution to the following non-convex optimization problem:




min
|Hm,n,k|2

exp
( ∑
m,n,k

Um,n,k
σ2
m+|Hm,n,k|2 + log(σ2

m + |Hm,n,k|
2)
)

[
F−1|Hm,n,k|

2
]
l
= 0, Lc ≤ l ≤ K − Lc.

(3)

Since there is no tractable solution to (3), we propose the
following method to obtain an approximate solution. We notice
that the solution to (3), when the constraints are relaxed,
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is given by max(Um,n,k − σ2
m, 0). As such, we can use the

following method to find such an approximate solution:

1) Take IDFT of max(Um,n,k − σ2
m, 0) and retain the

first Lc and last Lc − 1 elements, i.e.,

ρ̂m,n(l) =

{
0, Lc ≤ l ≤ K − Lc

[F−1max(Um,n,k − σ2
m, 0)]l, else.

(4)

2) Take DFT of ρ̂m,n(l) and use |[F ρ̂m,n(l)]| as a
feasible initial estimate of |Hm,n,k|

2.

We approximate the solution of (3) with ̂|Hm,n,k|2 ≈
|[F ρ̂m,n(l)]k|. Substituting this approximation in
f({Ym,n,k}|H1)
f({Ym,n,k}|H0)

≷H1

H0
η̄2, with η̄2 being the detection threshold,

we propose the following sub-optimal GLRD:

Λ2,
∑

m,n,k

|[F ρ̂m,n(l)]k|

σ2
m+|[F ρ̂m,n(l)]k|

Um,n,k

σ2
m

−log(1+
|[F ρ̂m,n(l)]k|

σ2
m

)
H1

≷
H0

η2,

(5)

where η2 = log(η̄2).

Using (5), each sensor only needs to know the noise
variances σ2

m and performs an order of NK log2K operations
(due to the dominant contribution of DFT in the complexity).
This detector exploits the additional a-priori knowledge of
uniform transmit powers. However, this exploitation involves
extra cost for the computation of |[F ρ̂m,n(l)]| using (4).

Under the stationary channel mode, relaxing the con-
straints, the solution to (3) is given by max( 1

N
Um,k − σ2

m, 0),
where Um,k =

∑
n Um,n,k. In this condition, the same pro-

cedure, as described above, provides a feasible starting point

when the term Um,n,k is replaced with
Um,k
N

in (4).

B. GLRD: Non-uniform Power Distribution and Unknown
SNRs

In contrast to the Section IV-A, here we assume the channel
variations are slow and therefore the OFDM source employs
bit-loading techniques (e.g. [9]) and adapt the transmit powers
according to the channel. As such, we derive the GLRD
assuming that {|Hm,n,k|

2Pk} are unknown while {σ2
m} are

known. To this end, we need the MLE of θm,n,k, i.e., θ̂m,n,k,
which is found by maximizing f({Ym,n,k}|H1) with respect

to θm,n,k as θ̂m,n,k = max(Um,n,k, σ
2
m). Substituting θ̂m,n,k

in the likelihood ratio
f({Ym,n,k}|H1)
f({Ym,n,k}|H0)

H1

≷
H0

η̄3, with η̄3 being the

detection threshold, and simplifying the result, we obtain the
following GLRD for the non-stationary channel model:

Λ3 ,
∑

m,n,k

g
(Um,n,k

σ2
m

)
u
(Um,n,k

σ2
m

− 1
)H1

≷
H0

η3, (6)

where η3 = log η̄3, u(.) is the step function, and g(x) = x −
1− log(x).

Under the stationary channel model, the MLE of θm,k is

given by θ̂m,k = max(
Um,k
N

, σ2
m). Thus, the GLRD in (6) is

still applicable. However, Um,n,k must be replaced with
Um,k
N

.

For the GLRD in (6), each sensor needs to know its noise
variance. In this setting, each sensor first censors less informa-
tive observations with insignificant energy, i.e., those for which

Um,n,k
σ2
m

< 1, (or
Um,k
Nσ2

m
< 1 under the stationary model) and only

takes into account the observations that favor the hypothesis
H1. Then, using the function g(x) = x− 1− log(x), sensors
performs a transform on the local energies and forwards

the summation
∑

n,k g
(Um,n,k

σ2
m

)
u
(Um,n,k

σ2
m

− 1
)
. This detector

requires each participating sensor to performs only an order
of KN log2K operations (due to the dominant contribution
of DFT in the complexity), which is fewer than that of
the suboptimal time-domain detector proposed in [6] which
requires an order of NK2 operations.

C. GLRD: Unknown SNRs and Noise Variances

So far, the noise variance was assumed known. In some
situations, the noise spectrum may vary with time and therefore
it must be estimated based on the acquired samples. Here,
we treat the noise variance as unknown and derive a GLRD.
This GLRD does not need to know which sub-carriers are
modulated or what their amplitudes are. To estimate the
unknown, we maximize the pdfs in (1) with respect to θm,n,k.
Thus we have

H0 : σ̂2
m =

∑
n,k Um,n,k

NK
, H1 : θ̂m,n,k = Um,n,k. (7)

Substituting (7) respectively in f({Ym,n,k}|H0) and
f({Ym,n,k}|H1), we obtain the following GLRD:

Λ4 ,
∑

m

Ω(Um,1,1, . . . , Um,N,K)
H1

≷
H0

η4. (8)

where Ω(x1, . . . , xp) = log(
x1+...+xp

p
) −

log x1+...+log xp
p

,

referred to as the homogeneity index of (x1, . . . , xp), and η4 is
the detection threshold. To use Λ4 for the stationary channel

model and under H1, it can be shown that θ̂m,n,k =
Um,k
N

.

Thus, the term Um,n,k must be replaced by
Um,k
N

.

It is proven in [8] that the probabilities of false alarm Pfa

and misdetection Pmd of Λ4 as NK → ∞ can be expressed
as follows:

Pfa,Λ4 ≈ Q( η4
√

αMψ′(α)−M
NK

), (9)

Pmd,Λ4
≈ 1−Q(

η4−
∑

m Ω(θm,1,1,...,θm,N,K)
√

αMψ′(α)−M
NK

− M
NK

+
∑

m α−1

∑

n,k θ
2
m,n,k

(
∑

n,k θm,n,k)2

),

where Q(x) = 1√
2π

∫∞
x
e−

t2

2 dt, and η4 =

η4−M(log(P )−ψ(P )). This results show that as∑
m Ω(θm,1,1, . . . , θm,N,K) (the homogeneity index of

the subband energies) increases, a better performance can be
achieved. This happens only if θm,n,k are heterogenous, i.e.,
the source spectrum observed by sensors are non-flat. This
detector compares the ratio of arithmetic to geometrical mean

of the reported subband energies (Um,n,k or
Um,k
N

) with a
threshold. In fact, the ratio of geometrical mean to arithmetic
mean is measure of spectral flatness, i.e., Λ4 is always
positive and quantifies how the observed signal resembles a
white noise process. A smaller value for Λ4 indicates that the
energy is more uniformly distributed over all the subbands
and the power spectrum is more flat. Otherwise, a large value
of Λ4 indicates that more power is concentrated in a number
of bands than the other subbands. Note that under H0, the
signal is a white noise process and has a flat spectrum. As a

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

382



drawback, this detector fails in some cases (e.g. at low SNRs)
where under H1, the spectrum is flat as it misinterprets the
observation as white noise and favors H0. This implies that
Λ4 performs well only if the received power spectrum from
the source is non-flat and but that of noise is.

Additionally, Λ4 is a constant false alarm detector and
does not require a-priori knowledge about the noise variance
and the SNRs. For this detector, each sensor must carry out
an order of KN log2K computations (due to the dominant
contribution of DFT in the complexity) to obtain the real
number Ω(Um,1,1, . . . , Um,N,K) and shall report it to the FC.
The complexity of the time-domain GLR detector proposed in
[6] is of order of NK2 and is more than that of Λ4.

V. SIMULATION RESULTS AND DISCUSSION

We now evaluate the proposed detectors numerically. Fig-
ure 1 depicts the Pmd versus the Pfa of Λ1 to Λ4 with
K = 32,M = 4, σ2

m = 0.4m and a cyclic-prefix Lp = 8
for two scenarios: 1) dashed line: N = 10 and and 2) solid
line: N = 20. We assume that only half of the subbands are
occupied with Pk = 1. In Figure 1, we also compare the
performance of these detectors with two time-domain detectors
proposed in [6, eq. (21)-(22)] denoted by Λ5 and Λ6. We
observe that the performance of these detectors improves as the
number of observation intervals N increases, i.e., the perfor-
mance loss of the sub-optimal detectors can be compensated by
increasing N . For instance, our simulation results show that Λ2

for N = 60 outperforms the optimal detector Λ1 with N = 20.
Since our proposed detectors exploit the frequency features of
the signal, they provide superior performance compared to the
time-domain detectors in [6].

Figure 2 depicts the Pmd versus Pfa of Λ2 to Λ6 for
K = 32,M = 4, σ2

m = 0.4m and a cyclic-prefix Lp = 8 and
fixed total transmit power of

∑
Pk = 32 for two cases where

only 20 (solid line) or 8 (dashed line) subcarriers are employed
for transmission. The case where only 8 subcarriers are em-
ployed represents an extremely non-flat spectrum. Therefore,
we expect that the performance of Λ2, which assumes uniform
power allocation, significantly degrades as the homogeneity
index of the source spectrum increases. In addition, Λ3 which
estimates subband SNRs, outperforms other sub-optimal de-
tectors. In contrast, the performance of Λ4 is improved as the
homogeneity in of the source spectrum increases.

VI. CONCLUSION

We have considered distributed detection of an OFDM
random source using multiple sensors. We have analyzed the
optimal NP detector Λ1 (for known SNRs and noise variances)
and the GLRD Λ4 (for unknown SNRs and noise variance) and
proposed two new GLRDs Λ2 and Λ3 (assuming unknown
SNRs or noise variances). We have derived the miss-detection
and false alarm probabilities of Λ4. Our theoretical analysis
and simulation results have shown that the proposed frequency-
domain detectors outperform the state-of-the-art time-domain
detectors in applications such as cognitive radio.
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