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Abstract—In this paper, we analyze a binary hypothesis testing
problem using a wireless sensor network (WSN). Using Large
Deviation Theory (LDT), we compute the exponents of the error
probabilities for the detection of a constant under a correlated
process. Each sensor transmits its local measurement through a
multiple-access (MAC) Rician fading channel with a line-of-sight
(LOS) component to the fusion center (FC) using an uncoded
analog scheme. The FC decides if the constant is present or not.
We examine the behavior of the error exponents as a function of
the correlation process and the fading LOS component. We also
show that this scheme achieves the centralized error exponents
when the number of sensors approaches infinity even when the
fading LOS paths between the sensors and the FC are not so
strong and the underlaying process is correlated. In this way,
neither feedback between the FC and the sensors nor cooperation
between the sensors is necessary to provide a sufficient statistic
to the FC.

I. INTRODUCTION

In this work, we analyze the performance of a detection
problem with two hypotheses in the context of large wireless
sensor networks (WSN). Spatially distributed sensors take
measurements and communicate them to a fusion center (FC),
where the final decision is made. In particular, we investigate
the distributed detection problem of deciding if the bias of
a correlated process is present or not. For simplicity of
exposition we assume that the bias is constant. The extension
to any deterministic signal is straightforward [1].

Usually a large WSN is built of several hundreds or
even thousands nodes with the ability to sense some physical
magnitude. As sensors are packed closer, it is reasonable to
expect that their measurements become more correlated [2].
A good measure of the performance of large networks are
the error exponents as the amount of sensors goes to infinity.
The error exponents give an estimate of the number of sensors
required to reach a certain error probability.

We assume that the sensors use an uncoded analog scheme
to transmit their local measurements [3]–[5]. Several works
on distributed detection have been done assuming that sensors
communicate with the FC through orthogonal channels [2],
[6], [7]. However, for a large WSN, this assumption implies
a large bandwidth requirement for simultaneous transmission
or a large detection delay. On the other hand, a much more
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bandwidth-efficient usage of the channel is to use a multiple-
access channel (MAC), where the sensors transmit simulta-
neously on the same bandwidth. Due to the nature of the
wireless channel, the FC receives the superposition of all
sensor measurements. The key point is to design the transmit
signal in such a way that the received signal at the FC becomes
a sufficient statistic. The case of a Gaussian MAC channel
without fading with independent and identically distributed
(i.i.d.) observations was considered in [8]. There, it is shown
that the analog transmission of the log-likelihood ratio (LLR)
asymptotically achieves the centralized error exponent, when
the number of sensor approaches infinity. In this paper, we
calculate the error exponents in the Neyman-Pearson frame-
work for a Gaussian MAC Rician fading channel [9] using
large deviation theory (LDT) and show its dependency with the
process correlation and with the fading characteristics. In the
limit, when the variance of the fading vanishes, we recover the
result shown in [1]. Also, we will work with a MAC channel
under perfect synchronization. The case in which some phase
uncertainty exists in the communication link was analyzed in
[1].

The paper is organized as follows. In Section II, we present
the network model. In Section III, we establish the extended
Toeplitz and Gärtner-Ellis theorems used in the derivation of
the error exponents calculated in Section IV. Some numerical
results are shown in Section V and the main conclusions are
mentioned in Section VI.

II. WIRELESS SENSOR NETWORK MODEL

We consider a binary hypothesis testing problem where
each one of the n sensors obtains the following the measure-
ments under both hypotheses

{

H1 : xk = θ0 + zk,
H0 : xk = zk, k = 1, . . . , n.

(1)

Here, θ0 ∈ R is the bias or constant1 to be detected and zn =
[z1, . . . , zn]

T is a Gaussian real-valued correlated vector with

zero-mean and Toeplitz covariance matrix Σ
(n). We also define

the measurement vector xn = [x1, . . . , xn]
T that takes the

form xn = θ01n + zn under H1 and xn = zn under H0,
where 1n is an n-dimensional vector of ones.

In the past years, several schemes were presented in the
literature where the log-likelihood ratio (LLR) is transmitted

1This model and thereafter results can be easily extended to a deterministic
signal as in [1].
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to the FC [10]–[12]. Note that in the case of (1), the local
LLR’s are affine function of the measurements. We assume that
all sensors have the same limited average power constraint and
that they transmit their local measurements to the fusion center
(FC) using an analog uncoded scheme trough a multiple-access
fading channel2. The signal received at the FC is

ỹn =
n
∑

k=1

h̃kxk + w̃ (2)

where w̃ is an additive circular complex Gaussian noise with

zero-mean and variance σ2
w̃ and h̃k takes into account the k-

th fading channel and the phase uncertainties present in the
communication links between the sensors and the FC due to
the different lengths of the wireless paths and the fact that each
node usually use independent local oscillators.

As pointed out in [13], these kind of schemes do not work
under zero-mean channels. In this paper, we assume that the
sensor network and the FC are fixed and the fading channels
follow a complex Gaussian distribution with approximately
equal line-of-sight (LOS) electrical paths. This is a common
and practical hypothesis given that the FC can be deployed
with an antenna in a high position with respect to the sensors.
Nonetheless, each of the LOS paths between each sensor and
the FC, can present a different phase, due mainly to different
physical characteristics in each LOS path and different mis-
matches between the oscillators at the nodes and the FC. This
could lead to destructive interferences between the LOS paths
of the n sensors as typically occurs in zero-mean channels. In
order to avoid this it is necessary to compensate each mean
channel phase at the sensors (transmitters) to have a MAC
channel with non-zero mean and constructive interference
between the LOS paths.

The channel phase compensation does not increase the
transmit power at the sensors and can be done easily in practice
by using the reverse channel (from the FC to the sensors) in a
time division fashion (TDD). The compensation scheme can be
done as follows. The FC broadcasts a pilot sequence and each
sensor compares the received signal with its local reference and
obtains a phase estimation. The duration of the pilot signal Tp
must be long enough with respect to the coherence time of the
fading channel such that the ergodicity of the channel can be
used advantageously to estimate the phase of the channel mean
(which it is assumed to remain fixed during period Tp). This is
a one time procedure that has to be performed at the beginning
of the network operation. Depending on the thermal drift of
the oscillators, the speed at which the environment changes,
etc, an update procedure should be necessary at a regular basis.

Finally, the compensated or equivalent channels can be
represented by n complex Gaussian random variables with
mean µh̃ = |µh̃|ejψ and variance σ2

h̃
, where ψ is the com-

mon reference phase recovered after the estimation procedure
described above . Without loss of generality, we assume that
ψ = 0, and |µh̃| = µh > 0 . The signal received at the
FC is a complex random variable and both, quadrature and
in-phase components, have information sent by the sensors.
However, both components present an important difference:
the quadrature component channel is zero-mean and it only

2The scaling factor to satisfy the power constraint is assumed to be absorbed
by the measurements {xk}.

carries information of the energy of the sensed signal while
the in-phase channel has a non-zero-mean. As it is shown in
[13] in the non-fading case, there is no loss of asymptotic
optimality (when the number of sensors approaches infinity)
if the quadrature component is discarded at the FC because
its mean under both hypothesis is null. Therefore, we only
consider the real or in-phase component of the received signal
at the FC,

yn =
1

n

n
∑

k=1

hkxk +
w

n
, (3)

where hk ∼ N (µh, σ
2
h), w ∼ N (0, σ2

w), with σ2
h = σ2

h̃
/2,

σ2
w = σ2

w̃/2, and we have normalized the received signal by
the number of sensors. The test performed by the FC is the
following: Choose H1 if yn > τ, and choose H0 otherwise,
where τ is the predefined threshold of the test.

III. PRELIMINARY TOOLS

In this section, we introduce the main tools to compute the
error exponents. First, an extension of the Toeplitz distribution
theorem is presented and then, the Gärtner-Ellis theorem is
enunciated.

Theorem 1 (Extended Toeplitz Distribution [14]):

Let {sk}nk=1 be a deterministic signal with spectral density
P (ω) and define the vector sn = [s1, . . . , sn]

T . For an abso-

lutely summable Toeplitz matrix Σ
(n) with spectral density

S(ω), let {λ(n)k }nk=1 be the eigenvalues of Σ(n) contained

on the interval [δ1, δ2], and {φ(n)
k }nk=1 be the normalized

eigenvectors of Σ
(n), then for any continuous function f(·)

defined on [δ1, δ2], we have

lim
n→∞

n
∑

k=1

f(λ
(n)
k )(sTnφ

(n)
k )2 =

1

2π

∫ π

−π

f(S(ω))P (ω)dω.

Theorem 2 (Gärtner-Ellis [15]):

Let {yn} ∈ R be a sequence of random variables drawn
according to the probability law {Pn}, and define

Λ(n)(t) = logE[etyn ]. (4)

Assumptions: (1) For each t ∈ R, the logarithmic moment-gen-
erating function, defined as the limit Λ(t) = lim

n→∞

1
n
Λ(n)(nt)

exists as an extended real number. (2) The interior of DΛ =
{t ∈ R : Λ(t) < ∞}, denoted by Do

Λ, contains the origin.
(3) Λ(·) is differentiable throughout Do

Λ, and (4) Λ(·) is steep,
i.e., limn→∞ Λ′(tn) = ∞ whenever {tn} is a sequence in
Do

Λ converging to a boundary point of Do
Λ. Under the above

assumptions, the large deviation principle (LDP) satisfied by
the sequence {Pn} can be characterized by the Fenchel-
Legendre transform of Λ(t):

Λ∗(x) = sup
t∈R

{xt− Λ(t)}. (5)

That is, if Go and Ḡ are the interior and closure of a set
G ⊂ R, respectively, we say that {yn} satisfies the LDP with
rate function Λ∗(x) if, for any G ⊂ R we have

− inf
x∈Go

Λ∗(x) ≤ lim inf
n→∞

1

n
logP(yn ∈ G)

≤ lim sup
n→∞

1

n
logP(yn ∈ G) ≤ − inf

x∈Ḡ
Λ∗(x). (6)
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In hypothesis testing G mostly satisfies the ∆-continuous
property [15] where ǫG is the error exponent:

ǫG , inf
x∈Go

Λ∗(x) = inf
x∈Ḡ

Λ∗(x). (7)

IV. DETECTION ERROR EXPONENTS

Within the Neyman-Pearson framework, the probability of
false alarm Pfa is defined as the probability of choosing
hypothesis H1 when H0 is correct, and the probability of miss
detection Pm is defined as the probability of deciding H0 when
H1 is true. In this work, we are interested in the analysis of
large networks, and therefore, we analyze the rate of decaying
of both Pfa and Pm when the number of sensor n approaches
infinity, i.e., we compute the corresponding error exponents
ǫfa and ǫm defined as,

ǫfa = − lim
n→∞

1
n
logP

(n)
fa , ǫm = − lim

n→∞

1
n
logP

(n)
m .

Let G0 = {x ∈ R : x ≤ τ} and G1 = {x ∈ R : x > τ} denote
the decision regions. The detector decides H0 if yn ∈ G0

and H1 if yn ∈ G1. We compute the error exponent ǫfa by
applying Th. 2 with G = G1 and considering the expectation
in (4) under H0. Similarly for ǫm, we use G = G0 and take the
expectation in (4) under H1. Then, for hypothesis Hi, i = 0, 1,
(4) becomes

Λ
(n)
i (nt) = logEYn|Hi

[entyn ], i = 0, 1.

= logEXn|Hi

[

n
∏

k=1

EHk|Xk=xk

(

ethkxk |Hi

)

]

+ logEW
(

etw
)

, (8)

where in the second step we have used the fact that the
fading coefficients are independent. Considering that both hk
and w are Gaussian random variables, we use their moment-
generating function to write

Λ
(n)
i (nt) = logEXn|Hi

[

etµh1
T

n
xn+

σ
2

h

2
t2‖xn‖

2

]

+
t2σ2

w

2
. (9)

The distribution of Xn is a multivariate Gaussian with covari-
ance matrix Σ

(n) and mean µi1n, where µ0 = 0 under H0

and µ1 = θ0 under H1. Completing squares in (9) we obtain

Λ
(n)
i (nt) =

a
(n)
i

2
− 1

2

n
∑

k=1

log
(

1− t2σ2
hλ

(n)
k

)

+
t2σ2

w

2
, (10)

where λ
(n)
k are the eigenvalues of Σ(n) and

a
(n)
i = 1

T
n

(

tµhIn + µiΣ
(n)−1

)(

Σ
(n)−1 − t2σ2

hIn

)−1

×
(

tµhIn + µiΣ
(n)−1

)

1n − µ2
i1
T
nΣ

(n)−1
1n

with In being the identity matrix of size n × n. Considering
Th. 1 with P (ω) = 2πδ(ω), which is the spectral density of
the unit-energy constant sequence 1/

√
n, . . . , 1/

√
n, and using

f(·) = log(·), we have

Λi(t) = lim
n→∞

1

n
Λ
(n)
i (nt)

=
1

2

t2µ2
hSz(0) + 2tµhµi + t2σ2

hµ
2
i

1− t2σ2
hSz(0)

+
1

4π

∫ π

−π

− log
(

1− t2σ2
hSz(ω)

)

dω, (11)

where Sz(ω) is the power spectral density of the wide-sense
stationary process {zk}. The effective domain of Λi(t) is

DΛi
= {t ∈ R : |t| < 1/(σh

√

maxSz(ω))}. Note that in the
first term of the expression above the power spectral density
appears only trough its DC component. This is because the
deterministic signal considered is constant. To calculate the
error exponents, the optimization (5) can be done numerically.

In hypothesis testing, we typically have that the threshold
τ ∈ (E(yn|H0),E(yn|H1)). This is because for τ laying
out of that interval the error exponents cannot be non-zero
simultaneously and the practical interest is when both, the
false alarm and miss error probabilities decay exponentially
to zero. Therefore, and because of the convexity of Λi(t), the
last optimization given by (6) is achieved for x∗ = τ and the
error exponents are given by Λ∗

i (τ) [16].

Let K be the strength of the LOS component divided by
scattered power, i.e., K = µ2

h/σ
2
h. We normalize the second

order moment of the fading in such a way that µ2
h + σ2

h = 1.
When K approaches zero, the mean of the channel goes to
zero and the LOS component vanishes. On the other hand,
if K approaches infinity, σ2

h goes to zero and the channel
becomes deterministic. It is worth to note that the case of
a MAC channel without fading can be obtained by taking the
limit of (11) when K → ∞ (or σ2

h → 0). The Fengel-Legendre
transform can be computed analytically and we recover the
result in [1] as a particular case:

ǫfa =
θ2
0

2Sz(0)
τ2, ǫm =

θ2
0

2Sz(0)
(1− τ)2 0 ≤ τ ≤ 1, (12)

where the threshold was normalized to one. Both error ex-
ponents depend on Sz(0), which is proportional to the vari-
ance of the process {zk}, σ2

z . Therefore, the error exponents
depend proportionally on the signal-to-noise ratio defined as
SNR= θ20/σ

2
z . The trade-off between ǫfa and ǫm is evident in

(12).

V. NUMERICAL RESULTS

In this section, we evaluate numerically the error exponents
for an autoregressive process of order 1 with power spectral

density given by Sz(ω) =
σ2

z
(1−ρ2)

1+ρ2−2ρ cos(ω) where ρ ∈ (−1, 1)
determines the correlation of the process.

In Fig. 1, the receiver operating characteristic (ROC) for the
error exponents is plotted for several SNR’s for the indicated
K and ρ. We observe the typical trade-off between both error
exponents when the threshold of the test is varied. Both ǫm
and ǫfa exhibit a saturation effect with the SNR due to the
fading, although the saturation of the false alarm exponent
is at a higher SNR. That is, for a given K, there exists an
SNR for each error exponent from which they do not increase
significantly. Note that in the non-fading case, the saturation
effect disappears because of K → ∞.

In Fig. 2, both error exponents are plotted vs. the corre-
lation ρ. There exists an optimal correlation in which ǫfa or
ǫm are maximum but generally not for the same ρ∗. Note that
when |ρ| approaches 1, the error exponents go to zero. In the
case of |ρ| = 1, the covariance matrix of the process has rank
one and therefore, the process zn is determined by a unique
random variable. Then, the received signal yn can be expressed
asymptotically as the product of two independent Gaussian
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Figure 1. ROC for error exponents of the detector with ρ = 0.6, K = 1

and the SNR (in dB) as a parameter.

random variables, the one corresponding to the process and
the other corresponding to the channel. By computing its
distribution, it is easy to show that both error exponents are
null.
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Figure 2. False alarm (cont.) and miss detection (dashed) error exponents as
a function of the correlation coefficient with K = 1, and SNR 0 and 15dB
and normalized threshold τ = 0.7.

In Fig. 3, both error exponents are plotted against K,
the LOS strength of the fading channel for the parameters
indicated in the figure. As it is shown, the fading is harmful
and make the error exponents decrease. This is evident for
low values of K, where the fading variance is high with
respect to its mean. However, the error exponents saturates
for relatively low values of K and the fading channel behaves
as a deterministic channel: Ksat ≈ 1 for SNR = 0dB and
Ksat ≈ 10 for SNR = 15dB. In this scenario, the performance
coincides with that predicted by (12).

VI. CONCLUSIONS

In this paper, we analyze a distributed detection problem
in the context of a wireless sensor network with a FC. We
derived and evaluated the error exponents for the Neyman-
Pearson framework using LDT for a MAC Rician fading
channel. We showed how the error exponents behave with
the process correlation and that the error exponents exhibit
a saturation effect because of the fading characteristics. The
general conclusion is that, although fading degrades the system
performance, the analyzed scheme still works under non-zero-
mean fading channels and converges to the optimal centralized
scheme even when the fading LOS component is not so strong.
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Figure 3. False alarm (cont.) and miss detection (dashed) error exponents
as a function of the fading LOS strength for ρ = 0.6, τ = 0.7 (normalized
threshold) and SNR 0 and 15dB.
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