2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

Constrained Imaging for Radio Astronomy

Ahmad Mouri Sardarabadi
Faculty Electrical Eng.,
Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

Abstract—We show that the imaging problem for radio as-
tronomy is not only bounded below (the image is non—negative),
but there is also an upper bound. We show that the tightest
upper bound is the MVDR dirty image. We propose using
active-set methods to solve the imaging problem and show that
this algorithm is strongly related to sequential source removal
techniques like the CLEAN. Also recent studies show the relation
between non-negativity and sparsity which means that the
proposed optimization also benefits from sparsity in an automatic
way.

Index Terms—radio astronomy, imaging, deconvolution,
active—set, constrained optimization, non-negativity

I. INTRODUCTION

Many image deconvolution algorithms for radio astron-
omy, such as CLEAN [1], could be classified as sequential
source removal techniques. However as the complexity of
the telescopes is increasing, parametric methods and sparse
reconstruction techniques are becoming more popular [2], [3].
As we will show here, with the correct formulation, finding
the solution to a parametric method could lead to an active—set
algorithm that is strongly related to sequential source removing
techniques and hence benefit from both approaches.

One of the major complications with imaging for radio
astronomy is that the deconvolution problem becomes ill-
posed as the pixels become smaller [4]. To cope with this issue
any a—priori knowledge that might be available should be used.
The fact that the pixel values are non—negative could be used to
improve the image estimates. An example of this approach is
the non—negative least squares (NNLS) [5]. New studies show
that some of the classical techniques are promoting sparsity.
For example [6] shows the relation between the non—negativity
constraint and sparsity. This makes it worthwhile to revisit
these techniques.

In this paper we show that the pixel values are bounded also
from above and then we will extend the idea behind NNLS
and formulate the multichannel imaging as an optimization
problem with both lower and upper bounds. Here we will use
the active—set method because we can show a relation between
this approach and sequential source removal techniques like
the CLEAN. We will also demonstrate that the minimum vari-
ance distortionless response (MVDR) dirty image as defined
by [7] forms the tightest upper bound on the imaging problem.
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The automatic promotion of sparsity through non—
negativity, the relation between the active—set methods and se-
quential source removal techniques combined with the MVDR
dirty image and the flexibility in the choice of the cost function
makes this approach a good candidate for practical use.

In Sec. I we will describe the data model for a multichannel
telescope and in Sec. III we state the imaging problem and
introduce the bounds on the image values. Sec. IV gives a
brief description of the active—set method and describes the
relation between the CLEAN algorithm and the constrained
least squares (CLS), finally we will show the simulation results
in the Sec. V.

II. DATA MODEL AND PROBLEM DEFINITION

We have a system with p antennas which are observing the
sky. The received signal is split into /' subbands for which
the output of the system can be modeled as

Vi = Apxp +ny

where Ay is a p X m matrix containing the array response
vectors of the sources (without loss of generality we assume
that columns of Aj are normalized), x; is a m x 1 vector
representing the signals from the sky and nj is a p x 1 vector
modeling the noise. We assume that the noise and the sky
sources are independent such that the system can be modeled
using covariance matrices

Ry = E{yryt'} = AyRxAf + Ry

where 7 is the Hermitian transpose and Ry and R, j are
covariance of sky and noise signals, respectively. By assuming
that sky sources are independent, we can model R, = diag(o)
where o; represents the power of the ith source and we assume
that it is white over all subbands (If the source positions were
known, the imaging problem would be equivalent as finding
and estimate for o). Vectorizing both sides we have

r = vect(Ry) = (A 0 Ap)o +rn i

where * is the complex conjugate, o is the Khatri—-Rao product
and ry, ;, = vect(Ry ). The multichannel model for the whole
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system can now be given as

rp 'n1
r= =Ao + . @))
g 'n K
where
(AfoAy)
A=
(Ak o Ak)

The array response matrix may depend on more parameters
than just the direction of arrival, we will assume that the array
is calibrated for those parameters. Using the model above, we
will define the imaging problem in the next section.

III. IMAGING PROBLEM

We can formulate the imaging problem as following:
Given N samples of y for each of the K subbands, such
that we have

N-1

o ~ 1

B = veet(Ry) = veet(5; > yelnlyrn]™)
n=0

and an array response A for the pixels in the image, we want
to estimate the power of each pixel, which we stack in a vector
o p. We have introduced A and o, to emphasize the difference
between the true (and unknown) position of the sources and
the position of each pixel in the image.

As an example we will start with the Least Squares (LS),
this will help us explain some of the ideas, however we
are not limited to any particular cost function. Finding the
best approximation for LS cost function means minimizing
||# — Aop|3. Tt is straightforward to show that the solution
for this problem is given by any o, that satisfies

Hop, =s. )

where we define H = (A A) as the convolution matrix
and s = AH# as the (matched filter) dirty image. In a
majority of situations (2) is ill-posed and has an infinite
number of solutions which makes some kind of regularization
unavoidable.

We will now formulate our regularization as a set of
constraints on the image. A first constraint comes from the fact
that we are estimating the variance (power density) on each
pixel which means that o, > 0. This is the non—negativity
constraint that has been studied for example in [5]. However
by closer inspection of the ith pixel on the dirty image we
will see that for the kth subband we have

~H D ~ ~H B ~
Sik = &, Redix = 0pi + &, Ry k@i k 3)

where a; j, is the 7th column of Ak and f{n & 18 the contribution
of all other pixels and the noise and is per definition positive—
semidefinite. In fact af[kf{nkai, r could be used as a slack
variable. This means that Opi < 831 or o, < s. However
there are some cases where some pixels in the dirty image are
not positive, this is the result of a common practice in radio

astronomy that uses the calibration information, and subtracts
an estimate of the noise covariance matrix ﬁn from the data
and uses Rg = R — Ry, to form the dirty image. To avoid
this scenario one should make sure that Ry remains positive—
semidefinite when such an operation takes place.

Now we can formulate our imaging problem as

6, = argmin f(o) (@)
subject to 0 < o), <'s.

Here we will limit ourselves to LS cost functions for f(o ).

A common set of algorithms that deals with inequality
constraints is the active—set method [8, pp.186-189]. We will
show that a simple implementation of CLEAN is closely
related to solving (4) with this class of algorithms.

MVDR Dirty Image

In this section we will discuss the MVDR dirty image and
how it could be used to improve the active—set mehods. It has
been argued that using the MVDR dirty image will improve
the performance of the CLEAN algorithm [7]. We will show
the validity of this argument for any cost function optimized
with the active—set method. We derive the MVDR dirty image
as the answer to the following question: What is the tightest
upper bound we could set for our optimization problem?

To answer this question we will revisit (3) and write it in a
more general way.

~ H Eay
Sik = wi’kRkwi’k
H = =H H A
= W, 180 k0p,i@; Wik + W, Ry g Wik
H
=0p;+ Wi,kRT',kWi,k-

To make the third equality hold we have to demand
wi &, = 1. For the matched filter dirty image we have
chosen w; . = @, without putting any demands on the error
term. Now the question is how to choose w that the second
term in the most right hand expression is minimized. Note
that f{nk is not changed and the term we want to minimize
remains non—negative.

A simple linear minimization with equality constrain shows
that

1 N
PrT—— a
alR-1a
is the solution to this problem and the dirty image found in this
way is called the MVDR dirty image (the subscripts ¢ and &

are dropped here). We will recommend using the MVDR dirty
image on any cost function we choose to optimize.

IV. ACTIVE-SET ALGORITHM

Active-set methods is a name given to a range of algorithms
that are capable of solving optimization problems with in-
equality constraints. Without going into much details we will
give a brief description of the active—set method by closely
following [8].

The main idea is the use of KKT criteria [9] to divide the
problem with inequality constraints into smaller steps with
equality constraints. The KKT criteria states that at a minimum
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of a function f(op,) subject to inequality constraint Gop, < b
the following holds:

-g=G'n 5)
n>0 (©)

o=l
b= {s((?ré)}’

n is a vector of KKT multipliers and g is the gradient of
f(op). At each step the pixels are divided into two sets, one
set is equal to the boundary and forms the equality constraints
(active—set) and the other set is used to minimize the cost
function (free—set). At the end of each step it is decided
to continue with the current equality set or to update it. If
moving along the direction of descend makes a pixel value
to violate one of the boundaries, that pixel is set equal to the
corresponding boundary and the corresponding pixel is added
to the active—set. However when we decide that an answer
to the current sub—problem is sufficiently approximated, we
estimate KKT multipliers and remove the pixel corresponding
to smallest negative multiplier from the active—set and add it to
the free—set. The reason for this follows directly from KKT.
At the solution of an optimization problem with inequality
constraints, all the multipliers must be positive, a negative
value means that in that direction the cost function could have
been decreased without violating any constraints.

In the following section we will describe the relation
between CLEAN and LS.

where in our case

A. LS and CLEAN

In this part we will give the expressions for the gradient
and the Hessian of the LS cost function and then show its
relation with the CLEAN algorithm using some of the ideas
from the active—set algorithm. We write out the vector norm
from the LS cost function as an inner product and and take
the derivatives with respect to the unknown parameters

floy) = ga''s

where z = £ — Ao, is the error vector and its Jacobian is
0z ~
A

==
5a'p

and so the gradient of f(o,) becomes
g=—-Af(t - Ao,) =Ho, —s. (7

It is then straightforward to find the Hessian which is equal
to H as defined in (2). Now that the gradient and the Hessian
are found we can use them to find the constrained solution for
the LS cost function.

Let the ()(2?) be a vector or a square matrix with rows
and/or columns selected from the set X" at step n, then if the
solution of the least squares problem

Hro,r=gr ®)

where F is the free—set, satisfies all the constraints, we use it
as the solution of the sub—problem at step n and continue to
update the free/active—set by estimating the KKT multipliers,
otherwise we will use it as the direction of descend. The first
order approximation of multipliers follows directly from KKT
and is given by

Ne =8c )

where L is the part of active-set corresponding to the lower
bound and U to the upper bound. These steps are repeated
while 7 contains negative values or the maximum number of
iterations is reached.

Now we describe the relation between CLEAN and CLS.
The CLEAN algorithm can be describe as follows:

1) start from an empty cleaned image;

2) find the brightest source in the sky and add it to the
cleaned image;

3) update the dirty image by applying the convolution
matrix on the cleaned image and subtracting it from the
dirty image;

4) if a bright source can be detected in the new dirty image
go to step 2 otherwise terminate.

Now we will relate these steps to the active—set algorithm as
described above.

An empty image is an acceptable stating point because
the trivial solution is a feasible point. Because we start from
trivial solution F and U/ are empty, this means that the KKT
multipliers can be estimated as 7 = —s and its smallest
negative value is the largest pixel on the dirty image. Adding
this pixel, with index i, to the free—set and solving (8) will
give us 6, ; = s;. This value does not violate the boundary and
is set as the solution for this iteration. However this pixel is
immediately added to active—set again. Now that we updated
6, we need to calculate the gradient at the current point before
we proceed. Using (7) we see that except for a sign difference
this is exactly what is done in step 3. So far the two algorithm
have been identical.

It is straightforward to show that the second iteration is
also identical, however unless the upper bound is changed,
the third iteration will be different. This is because at the end
of second iteration, the pixel value no longer has to be equal
to the upper bound, and it will still be in the free—set when we
start the third iteration. We could update the upper bound for
each iteration based on the current best estimates. However
this will make the two algorithms identical only to the point
where 77, starts to correct for the overestimated values in the
upper bound.

We have shown that the the CLEAN algorithm is the
repetition of the first iteration of the active—set method with
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Fig. 1: Simulation Results
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LS cost function and that the updated dirty image in step
3 of CLEAN, up to a sign, is the gradient as defined by
(7). It is then worth noting that we have found mathematical
motivations for each step of the CLEAN algorithm which are
otherwise are not so clear.

V. SIMULATIONS

We use simulations to verify some of the claims we have
made in the previous sections. For our simulations we will
use a uniform linear array (ULA) with p = 7 antennas. We
place four sources with equal powers, Rx = I, at exactly one
angular resolution distance (= 16°). Because the sky sources
are usually very weak, we add white Gaussian noise to obtain
an SNR of —10dB. We will choose our pixels to be one tenth
of the angular resolution of the array (= 1.6°) which will lead
to 109 pixels. Because of the low SNR we use a large number
of samples N = 10K. In order to show the effect of noise
and to make sure that we don’t introduce negative pixels, we
use f{o =R - 0.9R,.

Figure 1 illustrates the results of the simulations for (a)
NNLS, (b) constained LS (CLS) with MVDR dirty image
as upper bound and (c¢) the result of CLEAN. As expected,
adding an upper bound greatly improve the LS estimates by
comparing the results of CLS to NNLS. CLEAN and CLS
have similar results, but because of the MVDR dirty image,
the noise is slightly better suppressed in the case of CLS.

VI. CONCLUSIONS

We showed that the image deconvolution problem has
physical bounds that should be used to improve the estimation
process. We have found the tightens upper bound on the image
values to be the MVDR dirty image. Also starting from a
parametric model we arrived at the active—set algorithm that
shows strong similarity with the sequential source removal
techniques. We have shown that there is a mathematical
reasoning, based on the KKT criteria, that explains why at
each iteration the strongest source in the residual image should
be used in the optimization process.
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