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Abstract—Distributed reinforcement learning algorithms for
collaborative multi-agent Markov decision processes (MDPs) are
presented and analyzed. The networked setup consists of a
collection of agents (learners) which respond differently (depend-
ing on their instantaneous one-stage random costs) to a global
controlled state and the control actions of a remote controller.
With the objective of jointly learning the optimal stationary
control policy (in the absence of global state transition and local
agent cost statistics) that minimizes network-averaged infinite
horizon discounted cost, the paper presents distributed variants
of Q-learning of the consensus + innovations type in which
each agent sequentially refines its learning parameters by locally
processing its instantaneous payoff data and the information
received from neighboring agents. Under broad conditions on
the multi-agent decision model and mean connectivity of the
inter-agent communication network, the proposed distributed
algorithms are shown to achieve optimal learning asymptotically,
i.e., almost surely (a.s.) each network agent is shown to learn
the value function and the optimal stationary control policy of
the collaborative MDP asymptotically. Further, convergence rate
estimates for the proposed class of distributed learning algorithms
are obtained.

Index Terms—Multi-agent stochastic control, distributed Q-
learning, reinforcement learning, collaborative network process-
ing, consensus + innovations, distributed stochastic approxima-
tion.

I. INTRODUCTION

This paper considers multi-agent decision-making in dy-
namic and uncertain environments, with a network of agents1

and a controlled global state process or signal (a finite state
Markov chain with controlled transitions). The actions of a
remote controller and the resulting controlled state influence
the statistical distribution of the random instantaneous costs
incurred at the agents. These Markov decision processes
(MDPs) pertain to collaborative welfare; the agent network is
interested in obtaining the optimal stationary control strategy
that minimizes the network-averaged infinite horizon dis-
counted cost. As an illustration, the multi-agent setup can be
a thermostatically controlled smart building where the global
state represents environmental dynamics affecting the spatial
temperature distribution and the agents correspond to sensors
distributed throughout the building. The objective of the build-
ing thermostatic controller may be to minimize the average of
the squared deviations of the measured temperatures at the
sensing locations from a desired reference value. In a second
example, now drawn from the financial markets, the global
signal may relate to the dynamic market interest rate affecting,
for example, the investment patterns of the social agents, with
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1Agent is a generic term, its scope depends on the application.

the economic policies (actions) of the regulator (controller)
aiming to sustain overall economic growth. Our formulation
transcends these examples to include many practical scenarios,
ranging from large-scale load control for efficient demand-side
management in energy networks [1] to collaborative decision-
making in multi-agent robotic networks [2]; see also the survey
articles [3], [4] for related and other variants of MDPs in multi-
agent settings.

Reinforcement learning, of which Q-learning [5], [6] is
an instance, is a practical methodology for MDPs lacking
prior information on the problem statistics, including the
transition behavior of the controlled state process and, as in our
multi-agent setting, the statistical distributions of the agents’
instantaneous costs (varying with the agent). Rather than
relying on exact problem statistics, Q-learning reformulates
the Bellman equation to generate sequential (stochastic) ap-
proximations of the value function using instantiations of state-
action trajectories that may correspond to online real-time data
obtained while implementing the control, e.g., [6], in which
case the resulting Q-learning methods are, in fact, instances
of direct adaptive control [7], or, may correspond to training
data obtained through simulated state-action responses, see [8]
for various exploration methods. Direct application of classical
reinforcement learning techniques to our proposed multi-agent
setting with possibly geographically distributed agents would
require a centralized computing architecture with access to
the instantaneous one-stage costs of all the agents at all times
(see Section II). Since the instantaneous one-stage costs are
only observed locally at the agents, this, in turn, would require
each network agent to forward its one-stage cost to the remote
central location at all times, not feasible due to limited energy
resources at the agents and a bit-budgeted communication
medium. To cope with these difficulties, a fully distributed
variant of Q-learning, the QD-learning, was proposed and
analyzed in [9] in which optimal learning of the MDP value
function and the associated optimal stationary control policy is
achieved at each network agent through local computation and
peer-to-peer information sharing (cooperation) over a preas-
signed sparse possibly time-varying communication network.
The distributed learning framework of [9] is very general and
caters to both online adaptive control based and simulation
based scenarios. In this paper, we study in detail a simulation
based instance of QD-learning, in which learning data (state
transition and cost instantiations) at each stage is simulated
by independently and identically generating state-action pairs
and observing the one-step system response. Such independent
and identically distributed (i.i.d.) sampling of state-action pairs
for generating learning data is common in the (centralized) Q-
learning literature [10], and the temporal convergence rate of
the corresponding (centralized) instantiation of Q-learning is
well known. As a main result of this paper, we show that, in
this i.i.d. sampling scenario, the simulation-based instance of
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our distributed QD-learning procedure is order-optimal, i.e.,
as far as the time-order of convergence is concerned, it is as
good as the corresponding simulation-based instance of the
centralized Q-learning procedure. Furthermore, we show that
the local Q-value estimates generated by our distributed al-
gorithm are asymptotically normal, the asymptotic covariance
(same for all the network agents) being a function of the state-
action sampling distribution and the true model statistics.

Finally, we note that, QD-learning as described here does
not address two issues that may be relevant in applications:
partial state observation and decentralized actuation. Specifi-
cally, we assume that each network agent observes perfectly
the global state, and, in contrast to setups with local decen-
tralized agent actuations, we assume that the control actions
are generated by a remote (global) controller and are perfectly
known at the agents2.

The rest of the paper is organized as follows. Spectral graph
theory notation is reviewed next. The multi-agent learning
setup is described in Section II. Section III presents the
proposed distributed reinforcement algorithm and derives its
convergence, the main results of the paper. Finally, Section IV
concludes the paper and discusses future research avenues.
Spectral graph theory: The inter-agent communication net-
work is an undirected simple connected graph G = (V,E),
with V = [1 · · ·N ] and E denoting the set of agents (nodes)
and communication links. The neighborhood of node n is

Ωn = {l ∈ V | (n, l) ∈ E} (1)

Node n has degree dn = |Ωn|. The structure of the graph
is described by the N × N adjacency matrix, A = A> =
[Anl], Anl = 1, if (n, l) ∈ E, Anl = 0, otherwise. Let D =
diag (d1 · · · dN ). The graph Laplacian L = D −A is positive
definite, with eigenvalues ordered as 0 = λ1(L) ≤ λ2(L) ≤
· · · ≤ λN (L). The eigenvector of L corresponding to λ1(L)
is (1/

√
N)1N . The multiplicity of its zero eigenvalue equals

the number of connected components of the network; for a
connected graph, λ2(L) > 0. This second eigenvalue is the
algebraic connectivity or the Fiedler value of the network.

II. SYSTEM MODEL

Let {xt} be a controlled Markov chain taking values in a
finite state space X = [1, · · · ,M ], and U be the finite set of
control actions u. Assume3 the state transition is governed by

P (xt+1 = j|xt = i,ut = u) = pui,j , ∀i, j ∈ X , u ∈ U (2)

where
∑
j∈X p

u
i,j = 1 for all i ∈ X .

There are N agents, agent n incurring a random one-stage
cost4 cn(i, u) whenever control u is applied at state i. For a
stationary control policy π, i.e., where {ut} satisfies ut =

2The assumption that each network agent has access to the control actions
of the remote controller may be relevant, for example, in financial or social
network applications, where the market or network entities are typically
informed about the policies of the global welfare organization. Even when
such direct observability is not possible, the control information might be
disseminated through network-wide broadcasts by the remote controller, given
that, being a global entity, it may have sufficient energy resources and that
the action broadcasts are finite-bit (due to the finiteness of the action space).

3The letters i and j will be reserved mostly to denote a generic element
of the state space X , whereas, u will denote a generic element of the control
space U . The state and control stochastic processes are bold symbols, {xt}
and {ut} respectively, although they assume a finite number of values only.

4The instantaneous costs cn(·) depend only on the current state of the
process and the control applied, but not on the successor state as is the case
with some control problems. The latter may often be reduced to the former
(i.e., current state and control dependence only) by proper state augmentation.

π(xt) for some π : X 7→ U , the state process {xπt } (the
superscript π indicates the dependence on the control policy
π) evolves as a homogenous Markov chain with5

P
(
xπt+1 = j

∣∣xπt = i
)

= p
π(i)
i,j . (3)

For a stationary policy π and initial state i of the process {xπt },
the infinite horizon discounted cost is given by

V πi = lim sup
T→∞

E

[
1

N

N∑
n=1

T∑
t=0

γtcn (xπt , π(xπt ))

∣∣∣∣∣xπ0 = i

]
,

(4)
where 0 < γ < 1 is the discounting factor. The cost V πi is
a global (centralized), as it involves the one-stage costs of all
the agents. Our Markov decision problem (MDP) evaluates the
optimal infinite horizon discounted cost

V ∗i = inf
π
V πi (5)

and the associated stationary policy π∗, if it exists.
Let V∗ = [V ∗1 , · · · , V ∗M ]T . Denote by T : RM 7→ RM the

(centralized) dynamic programming operator with

Ti(V) = min
u∈U

 1

N

N∑
n=1

E [cn(i, u)] + γ
∑
j∈X

pui,jVj

 , (6)

where Ti(·) is the i-th component functional of T (·),
such that, for V ∈ RM , T (V) = [T1(V), · · · ,
TM (V)]T . The Bellman equation [11] asserts that V∗ is a
fixed point of T (·), i.e., T (V∗) = V∗. Further, for strictly less
than one discounting factors γ, the dynamic programming op-
erator T (·) is a strict contraction, [11], thus implying the value
function V∗ to be its unique fixed point. As such, starting
with an arbitrary initial approximation V0 ∈ RM , one obtains
a sequence of iterates {Vt} of T (·), with Vt = T t(V0),
such that, Vt → V∗ as t → ∞. The above iterative con-
struction forms the basis of classical policy iteration methods
for evaluating the desired value function V ∗ (and hence the
corresponding optimal policy π∗(·)), at least when γ < 1.
However, in doing so, i.e., in constructing successive iterates
of T (·), the value iteration techniques assume that the problem
statistics (the expected one-stage costs and the state transition
probabilities pui,j) are perfectly known apriori.
Q-learning: Reinforcement learning methods are motivated

by scenarios lacking information about the problem statistics.
Based on a reformulation of the Bellman equation, T (V∗) =
V∗, Q-learning methods generate sequential (stochastic) ap-
proximations of the value function6 using instantiations of
state-action trajectories, as opposed to relying on exact prob-
lem statistics. The state-action trajectory instantiations for
value function learning may correspond to online real-time
data obtained while implementing the control, in which case
the resulting Q-learning methods are instances of direct
adaptive control [7], or correspond to offline training data
obtained through simulated state-action responses. For purpose
of analysis, the former subsumes the latter, as trajectories
obtained in the process of real-time control implementation

5Note that, in general, the set of actions U is state-dependent, which can
be accommodated in our formulation by redefining U to be the union of all
state-dependent action sets and modifying the one-stage costs appropriately.

6Instead of generating successive approximations of the state-value function
V ∗
i , i ∈ X , Q-learning methods generate approximations of the state-action

value functions Q∗
i,u, (i, u) ∈ X × U , (often known as the Q-matrices or

factors) from which the desired value functions are recovered.
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incur temporal statistical dependencies due to memory in
the sequential control selection task. While the Q-learning
techniques discussed above are appealing as they relax the
requirement of prior system model knowledge, for our multi-
agent setting, they rely on a centralized architecture that
requires the instantaneous agent one-stage costs cn(xt,ut)
(for each network agent n) to be available at a centralized
computing resource at all times t with a view to obtaining
an approximation of the sum of expectations in (6). Since,
the instantaneous one-stage costs may only be observed at the
agents, this, in turn, requires each network agent to transmit
its one-stage cost to the remote central location at all times,
which may not be feasible due to limited energy resources at
the agents and a bit-budgeted communication medium. This
motivates us to consider a fully distributed alternative, in
which the agents autonomously engage in the learning process
through collaborative local communication and computation.

III. A DISTRIBUTED Q-LEARNING ALGORITHM AND ITS
CONVERGENCE

In the simulation based QD-learning scenario we consider
in this paper, we assume that at each (simulation) time instant
t, a state-action pair (xt,ut) is generated independently and
identically (over time t) according to a prespecified sampling
distribution ηd on the state-action space X × U . Once the
pair (xt,ut) is realized, the (one-step) system transition x́t
is observed and, in addition, each agent n obtains its lo-
cal (random) one-stage payoff cn(xt,ut). In QD-learning,
based on the observed (simulated) system transition behavior
(x́t,xt,ut) and the instantaneous local payoffs cn(xt,ut)
realized, each network agent n updates its learning parameters
(to be formalized in Section III-A) with a view to refining its
estimates of the value function and the optimal policy (4)-(5).
Further, in addition to the locally generated or observed data,
each agent n also incorporates the information sent to it by its
communication neighbors (see Section III-A) in the estimate
update process.

Before proceeding to a description of the distributed QD-
learning algorithm, we formalize the assumptions on the state-
action sampling process and the inter-agent communication in
the following.
(M.1): The (one-step) state transition x́t in response to a
selected state-action pair (xt,ut) is consistent with the true
(but unknown) controlled Markov chain model at all times t,
i.e.,

P (x́t = j | xt = i,ut = u) = pui,j . (7)

(M.2): The state-action sampling distribution ηd assigns pos-
itive probability to each pair in X × U , i.e., for all (i, u) ∈
X × U we have

P ((xt,ut) = (i, u)) = ηd(i, u) > 0. (8)

Note that assumption (M.2) implies, in particular, that all
state-action pairs are simulated infinitely often as t→∞.

(M.3): The one-stage random costs possess super-quadratic
moments, i.e., there exists a constant ε1 > 0 (could be
arbitrarily small) such that

E
[
c2+ε1
n (i, u)

]
<∞, ∀n, i, u. (9)

(M.4): The sequence {Lt} of Laplacian matrices modeling the
time-varying inter-agent communication network is indepen-
dent and identically distributed, and connected in the mean,
i.e., λ2(L) > 0, where L = E[Lt] is the mean Laplacian.

A. Distributed QD-learning Algorithm

In QD-learning, each network agent n updates a R|X×U|-
valued sequence {Qn

t } (approximations of the so-called Q
matrices) with components Qni,u(t) for every possible state-
action pair (i, u). With this, the sequence {Qni,u(t)} at each
agent n for each pair (i, u) evolves in a collaborative dis-
tributed fashion as follows:

Qni,u(t+ 1) = Qni,u(t)− βi,u(t)
∑

l∈Ωn(t)

(
Qni,u(t)−Qli,u(t)

)
+ αi,u(t)

(
cn(xt,ut) + γmin

v∈U
Qnx́t,v(t)−Q

n
i,u(t)

)
. (10)

The weight sequences {βi,u(t)} and {αi,u(t)} are stochastic
processes for each pair (i, u) and given by:

βi,u(t) =

{
b

(k+1)τ2 if t = Ti,u(k) for some k ≥ 0
0 otherwise,

(11)

αi,u(t) =

{
a

(k+1)τ1 if t = Ti,u(k) for some k ≥ 0
0 otherwise, (12)

a and b being positive constants, where Ti,u(k) denotes the
(k + 1)-th sampling instant of the state-action pair (i, u). As
reflected by the weight sequences (11)-(12), at each agent n,
the component Qni,u(t) is updated at an instant7 t iff the current
state-action pair (xt,ut) corresponds to (i, u); otherwise stays
constant.

In addition to the processes {Qn
t }, each agent n updates an

R|X |-valued process {Vn
t }, that serves as an approximation

of the desired value function V∗. The i-th component of Vn
t ,

V ni (t), is successively refined as

V ni (t) = min
u∈U

Qni,u(t), i = 1, · · · ,M. (13)

We remark that the algorithm QD incurs no more compu-
tation at each agent than its centralized counterpart and being
recursive is quite efficient in terms of memory and storage
requirements. (Note that the Qn

t ’s, the Vn
t ’s as well as the

messages received from neighboring agents need not be stored
over time as the update depends only on the current values of
these quantities.)

The update rule (10) is in consensus + innovations form,
[12]; it is the interplay between an agreement or consensus
potential (agent collaboration) and a local innovation potential
that incorporates newly obtained intelligence (local sensing
of the instantaneous cost). The convergence of the resulting
algorithm may only be achieved by intricately trading off these
potentials, which, in turn, imposes further restrictions on the
algorithm weight sequences as follows:

(M.5): Persistence: The constants τ1 and τ2 in (11)-(12)
satisfy τ1 = 1 and 0 < τ2 < 1/2− 1/(2 + ε1), with ε1 in (9).
Assumptions (M.2) and (M.5) guarantee that the excitations
from the consensus and innovation potentials are persistent,
i.e., the (stochastic) sequences {αi,u(t)} and {βi,u(t)} sum
to ∞, for each state-action pair (i, u). They further guarantee
that the innovation weight sequences are square summable,
i.e.,

∑
t≥0 α

2
i,u(t) < ∞ a.s., and that the consensus po-

tential dominates the innovation potential eventually, i.e.,
βi,u(t)/αi,u(t)→∞ a.s. as t→∞ for each pair (i, u).

7The expression updated at an instant t refers to the transition Qn
i,u(t)

to Qn
i,u(t + 1), an event that occurs after the one-stage cost cn(xt,ut) has

been incurred and the successor state x́t reached. In terms of implementation,
such an update may be realized at the end of the time slot t.
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B. Main Result
Our main result concerns the convergence of the QD-

learning procedure under assumptions (M.1)-(M.5). It is stated
as follows:

Theorem 1 Let {Qn
t } and {Vn

t } be the successive iterates
obtained at agent n by the distributed algorithm (10)-(13).
Then, under (M.1)-(M.5), there exists Q∗ ∈ R|X×U|, such
that, for each network agent n and all τ ∈ [0, 1/2), we have

P
(

lim
t→∞

(t+ 1)τ‖Qn
t −Q∗‖ = 0

)
= 1, (14)

and √
t+ 1 (Qn

t −Q∗) =⇒ N (0, J) , (15)

where J is a matrix of appropriate dimensions and, in partic-
ular, independent of n; N (·, ·) and =⇒ denote the Gaussian
distribution and weak convergence, respectively.

Further, for each i ∈ X , we have

min
u∈U

Q∗i,u = V ∗i , (16)

and, hence, in particular, (t+ 1)τ‖Vn
t −V∗‖ → 0 as t→∞

a.s. for each n and all τ ∈ [0, 1/2), where V∗ denotes the
value function (5).

The proof of Theorem 1 is omitted due to space limitations.
Note that, the consistency, i.e., Qn

t → Q∗ as t → ∞ a.s.
is an immediate consequence of Theorem 3.1 in [9] (which
establishes consistency of generic QD-learning procedures) by
noting that the i.i.d. sampling assumption (M.2) implies that all
state-action pairs are generated (simulated) infinitely often a.s.
The additional properties concerning order of convergence (14)
and asymptotic normality (15) follow from general properties
of distributed stochastic approximation algorithms obtained
in [12], which are applicable due to the special structure
imposed by the i.i.d. state-action sampling scheme.

We note that the pathwise convergence established in (14)
is order-optimal, in that, for centralized Q-learning in the
i.i.d. sampling scenario, there exists in general no τ ≥ 1/2
such that the pathwise convergence rate of the corresponding
(centralized) Q-values is o(t−τ ) (see [10]). Another interesting
thing to note is that the asymptotic covariance (J in (15)) is
same for all the agents; however, J depends on the particular
state-action sampling strategy in place. However, to optimize
over sampling strategies in order to minimize8 J (which is
another indicator of convergence rate, the smaller the better),
one needs to consider adaptive sampling strategies since, in
general, such a minimizer will depend on the true model pa-
rameters (transition probabilities and cost distributions) which
are not known in advance (see also Section IV for related
discussion).

IV. CONCLUSION

The paper has investigated a distributed multi-agent re-
inforcement learning setup in a networked environment, in
which the agents (for instance, temperature sensors in smart
thermostatically controlled building applications, or, more
generally, autonomous entities in social computing and de-
cision making applications) respond differently to a global
environmental signal or trend. Our setup is collaborative and
non-competitive, with the overall network objective being

8Note, minimizing here is to be interpreted in the sense of the partial order
induced by positive semidefiniteness of matrices.

global welfare, i.e., specifically, the network is interested in
learning and evaluating the optimal stationary control strategy
that minimizes the network-average infinite horizon discounted
one-stage costs. Based on the generic QD-learning framework
developed in [9] for obtaining distributed algorithmic solutions
for such collaborative networked MDPs, we have provided a
distributed version of simulation based Q learning in which
state-action pairs are assumed to be generated (and system
behavior simulated) by i.i.d. sampling of the state-action
space. We have shown that the convergence of our distributed
learning approach is order-optimal, i.e., as far as the time-
order of convergence is concerned, it is as good as the optimal
centralized Q-learning procedure. Furthermore, the local Q-
value estimates are shown to be asymptotically normal, the
asymptotic covariance being a function of the state-action
sampling distribution and the true model statistics. Future
research would consider studying the impact of the state-action
sampling distribution on the asymptotic covariance (a measure
of the second-order convergence rate, the smaller the better)
of the Q-value estimates. In general, the optimal sampling
distribution that minimizes such asymptotic covariance is a
function of the true model and cost statistics; since these
parameters are not known in advance, adaptive sampling
strategies need to be considered for the proposed performance
optimization. Two other practically motivating and challenging
future research topics concern the partial state information
case, in which the global state process may not be perfectly
observable at the local agent level, and the distributed actuation
case, in which, instead of a remote controller acting on the
global signal, the agents are themselves responsible for local
actuations.
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