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Abstract—In this work a distributed tracking technique for
multiple non-overlapping targets is developed such that it utilizes
only sensors that acquire informative observations about the tar-
gets. A framework is designed where norm-one regularized fac-
torization is employed to decompose the sensor data covariance
matrix into sparse factors whose support facilitates recovery of
the target-informative sensors. Then, extended Kalman filtering
recursions are derived to perform target tracking using only the
target-informative sensors. Different from existing alternatives,
the novel algorithm can determine the informative parts of
the network topology without relying on underlying model
parameters and target trajectory estimates, can handle multiple
non-overlapping targets and is less sensitive to noise. Numerical
tests corroborate the effectiveness of the proposed approach.

I. INTRODUCTION

Sensor networks (SN) have been widely used in estimation
and target tracking applications. Existing tracking techniques
for SNs either require all sensors to be active [8], [12],
or rely on the tracking algorithm position estimates along
with the corresponding data and state model parameters to
determine informative sensors for a single target [7]. Other
related approaches emphasize more on determining sensor
sleeping intervals and not tracking [4], [6], while [11] assumes
the availability of the target position to activate sensors using
tree-based structures in the network topology.

When targets are present in the sensed field, they are typi-
cally localized and affect only a small portion of the network,
i.e., a small percentage of sensors will be located close to the
targets and acquire informative measurements. Sensors, which
are positioned close to a target, acquire measurements that
tend to be correlated, no matter what the underlying physical
model is. These properties give rise to a data covariance matrix
that consists of approximately sparse factors. A distributed
sparsity-cognizant framework is put forth to analyze the sensor
data covariance into sparse factors whose support will point
to the target-informative sensors. The latter task relies only on
the available sensor measurements and different from [7] does
not depend on model parameters and target position estimates
that may not be accurate.

Extended Kalman filtering (EKF) recursions are derived
to utilize only the informative sensor measurements to track
the position of the present targets which are assumed to
affect non-overlapping areas in the field. A robust interplay
between distributed sparse covariance decomposition and EKF
is proposed to perform tracking using only informative sensors.
Numerical tests indicate that only a small part of the SN has
to be active while closely tracking the field target(s).
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II. PROBLEM FORMULATION AND PRELIMINARIES

Consider an ad-hoc sensor network consisting of m sen-
sors. Each sensor is able to communicate only with ‘single-
hop’ neighbors that fall within its transmission range. The
single-hop neighborhood for sensor j is denoted by Nj , while
inter-sensor links are symmetric and the SN is modeled as
an undirected connected graph. Sensors acquire measurements
about r moving targets in the sensed field. At time instant t =
0, 1, 2, ..., sensors acquire observations xj(t) for j = 1 . . .m.
This work focuses on i) identifying the sensors that acquire
informative measurements about the targets; and ii) use the
target-informative sensors to track the targets’ position.

The sensor measurements adhere to the following model

xj(t) =
∑r

ρ=1
aρ(t)d

−2
j,ρ(t) + wj(t), (1)

where i) aρ(t) denotes the intensity of a signal emitted by the
ρth target (e.g., as a result of a radar signal impinging on the
target surface) and as targets are spatially separated, the inten-
sity of the signals bouncing back from the target surfaces are
assumed uncorrelated; ii) dj,ρ(t) denotes the distance between
the ρth target and sensor j at time t, while the square exponent
accounts for the power attenuation; and iii) wj(t) denotes the
zero-mean white sensing noise with variance σ2

w. The distance
term dj,ρ(t) is equal to ∥pj −pρ(t)∥, where ∥ · ∥ denotes the
Euclidean norm, pj ∈ R2×1 is the fixed and available position
for sensor j, while pρ(t) := [pρ,x(t), pρ,y(t)]

T denotes the
unknown ρth target position. The target state vector sρ(t)
contains pρ(t) and the velocity vρ(t) := [vρ,x(t), vρ,y(t)]

T ,
i.e., sρ(t) := [pT

ρ (t),v
T
ρ (t)]

T and evolves according to

sρ(t+ 1) = Asρ(t) + uρ(t), (2)

where uρ(t) denotes zero-mean Gaussian noise with co-
variance Σu. The state model noise uρ(t) is assumed to
be independent of the measurement noise, namely wt :=
[w1(t), . . . , wm(t)]T . The latter covariance matrix along with
the common transition matrix A are given as

A =

 1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 ,Σu = σ2
u

T
3/3 0 T 2/2 0
0 T 3/3 0 T 2/2

T 2/2 0 T 0
0 T 2/2 0 T


where T is the sampling period [1], and σ2

u a constant
controlling the variance of the entries of the state noise.
Emphasis is put onto developing a tracking scheme that is
capable of identifying informative sensors in the SN. Thus, it
is assumed that the r different target trajectories affect different
non-overlapping regions of the SN, i.e., the sensors do not have
to solve a multi-target data association problem (e.g., see [3])
that goes beyond the scope of the present work.
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Stacking the sensor measurements in a m × 1 vec-
tor xt, it follows that xt = Btat + wt, where at :=
[a1(t)a2(t) . . . ar(t)]

T and Bt ∈ Rm×r has entries Bt(j, ρ) =
d−2
j,ρ(t), while the covariance of wt is Σw = σ2

wIm with Im
denoting the m × m identity matrix. Since the entries of at
are uncorrelated it follows that the data covariance matrix is

Σx,t = BtDaB
T
t + σ2

wIm = H̄tH̄
T
t + σ2

wIm, (3)

where Da is a diagonal matrix whose diagonal contains the
variance of the entries in at, while H̄t := BtD

1/2
a . Recall that

Bt has entries Bt(j, ρ) = d−2
j,ρ(t), thus if sensor j is located

close to the ρth moving target at time t, then Bt(j, ρ) will
have large amplitude, whereas if j is far from the ρth target
then the corresponding entry will be close to zero.

Due to the locality of the targets a small number of sensors
will be informative, and many entries in the columns of Bt

will be relatively small making them approximately sparse (see
also solid-green informative sensors in Fig. 2). Sparsity-aware
distributed matrix decomposition techniques are combined
with extended Kalman filtering to perform target tracking by
utilizing only the target-informative sensors.

III. DISTRIBUTED SENSOR-INFORMATIVE TRACKING
ALGORITHM (D-NIT)

Recall that determination of the sensors that acquire infor-
mative observations about the ρth target amounts to locating
where the strong-amplitude entries are in the ρth column of
Bt, namely bρ,t. Once the informative sensors are recovered,
then pertinent EKF recursions will be applied among them.

A. Online Selection of Target-Informative Sensors

Let Sx,t := Σx,t − σ2
wIm = H̄tH̄

T
t , correspond to

the noiseless signal covariance matrix. Also, notice that the
indices of relatively small- and strong-amplitude entries in
bρ,t and h̄ρ,t are identical since h̄ρ,t = D

1/2
a (ρ, ρ)bρ,t.

Thus, determination of target-informative sensors boils down
to the task of recovering the approximately sparse factors
h̄ρ,t whose support (indices of strong-amplitude entries) will
indicate which sensors are relatively close to the ρth target.

In practice the time-varying ensemble covariance Σx,t is
not known. Time-variation in covariance is caused by the
targets whose changing position results a time-evolving H̄t.
Thus, the covariance matrix should be estimated in a way that
relies more on new data while gradually discarding the old
ones. A covariance estimate Σ̂x,t can be obtained using an
exponentially-weighted averaging scheme as

Σ̂x,t =
∑t

τ=0 γ
t−τxτx

T
τ , (4)

and Ŝx,t = (1 − γ)(1 − γt+1)−1Σ̂x,t − D̂w, where D̂w :=
diag(σ̂2

w,1, . . . , σ̂
2
w,m) while γ ∈ (0, 1) and σ̂2

w,j denotes a
noise variance estimate at sensor j obtained e.g., by averaging
noisy measurements in the absence of targets. The scaling
performed in Σ̂x,t when forming Ŝx,t is done such that
(1 − γ)(1 − γt+1)−1Σ̂x,t+1 would be an unbiased estimate
of Σx,t in a time-invariant setting.

A pertinent framework to recover the ‘sparse’ columns of
the unknown H̄t (or Bt) at time t relies on ℓ1 (norm-one)

regularization and involves the minimization problem [9]

Ĥt = argmin
H

||E⊙ (Ŝx,t −HHT )||2F +
∑r

ρ=1 λρ||hρ||1, (5)

where E denotes the adjacency matrix of the sensor net-
work setting, while ⊙ denotes entry-wise matrix product.
The Frobenius term ∥ · ∥F in (5) can be rewritten as∑p

j=1

∑
j′∈Nj∪j(Ŝx(j, j

′)−
∑r

l=1 H(j, l)H(j′, l))2 which en-
tails only the entries Ŝx,t(j, j

′) for j ∈ Nj that can be
evaluated by sensor j after communicating with its neighbors
in Nj . Thus, adjacency matrix E is used to comply with the
single-hop communication topology [9]. The ℓ1 regularization
term is widely used to effect sparsity, see e.g., [10].

Coordinate descent techniques [2, pg. 160] are utilized
to derive an iterative distributed minimization algorithm [9],
which minimizes the cost in (5) recursively wrt an entry
of H, while keeping the remaining elements in H fixed.
During one coordinate descent cycle all the entries of matrix
H are updated. Sensor j is responsible for updating the
entries {H(j, ρ)}rρ=1. It turns out that (details in [9]) during
coordinate cycle k, the update of the (j, ρ)-th entry of H,
namely Ĥk

t (j, ρ), can be obtained as the value that achieves the
minimum possible cost in (5) among the candidate values: i)
h = 0; ii) the real positive roots of the third-degree polynomial

4h3 + 4[
∑

µ∈Nj
[Ĥk−1

t (µ, ρ)]2 − δkt,S(j, j, ρ)]h (6)

+ λρ − [4
∑

µ∈Nj
δkt,S(j, µ, ρ)Ĥ

k−1
t (µ, ρ)] = 0;

and iii) the real negative roots of the third-degree polynomial

4h3 + 4[
∑

µ∈Nj
[Ĥk−1

t (µ, ρ)]2 − δkt,S(j, j, ρ)]h (7)

− λρ − [4
∑

µ∈Nj
δkt,S(j, µ, ρ)Ĥ

k−1
t (µ, ρ)] = 0,

where δkt,S(j, µ, ρ) := Ŝx,t(j, µ) −
∑r

ℓ=1,ℓ̸=ρ Ĥ
k−1
t (j, ℓ)

Ĥk−1
t (µ, ℓ). The roots can be obtained using, e.g, companion

matrices [9]. Note that sensor j can evaluate the coefficients
of the polynomials in (6) and (7) by exchanging informa-
tion only with its neighbors in Nj . Specifically, sensor j
receives {Ĥk−1

t (µ, 1), . . . , Ĥk−1
t (µ, r)} from sensors µ ∈ Nj

and forms δkt,S(j, µ, ρ). Similarly, it transmits to its neigh-
bors the r scalar updates for the jth row of H, namely
{Ĥk−1

t (j, 1), . . . , Ĥk−1
t (j, r)}. To facilitate an online imple-

mentation a small fixed number, say K, of coordinate descent
cycles is applied per time instant t. Pertinent techniques of
choosing the sparsity-controlling coefficients λρ that ensure
recovery of the informative sensors can be found in [9]. The
number of targets r does not have to be known a priori, an
upper bound can be used instead while a deflation mechanism
can be employed to estimate the sparse factors [9].

B. Extended Kalman Filtering

Once the target-informative sensors have been recovered
using the framework in Sec. III-A, the next step is to use the
target-informative observations, and the corresponding state
and observations models in Sec. II to perform target tracking.
Since the sensor measurements are not linearly related to the
unknown target position, EKF recursions are derived [5].

Let Iρ,t denote the recovered target-informative sensors
at time t whose measurements are dominantly affected by
the ρth target. One sensor within the sensor subset Iρ,t is
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designated as a cluster head (see Sec. III-C), namely Cρ,t. The
r sensors {Cρ,t}rρ=1 collect only the informative observations
xIρ,t := {xj(t)}j∈Iρ,t at t and combined with (1) and (2)
carry out the EKF tracking recursions to track the trajectory
of the ρth target. Let ŝρ(t − 1|t − 1) denote the correction
estimate for the true state sρ(t − 1), and Mρ(t − 1|t − 1)
the corresponding correction mean-square error (MSE) matrix
obtained by EKF at time instant t− 1 using the informative-
sensor measurements xIρ,τ for τ = 0, . . . , t−1. Since the state
model evolves linearly, the prediction state estimate ŝρ(t|t−1)
for sρ(t) using {xIρ,τ }t−1

τ=0 and the associated prediction MSE
matrix Mρ(t|t− 1) can be obtained as [5, Chp. 13]

ŝρ(t|t− 1) = Aŝρ(t− 1|t− 1), (8)
Mρ(t|t− 1) = AMρ(t− 1|t− 1)AT +Σu. (9)

Cluster head Cρ,t can carry out the recursions in (8) as
long as A and Σu are available across sensors, e.g., can
be determined from the physics of the problem. The EKF
correction recursions can be obtained after linearizing the
observation model around the prediction estimate ŝρ(t|t − 1)
[5]. Note from (1) that the informative measurements adhere
to the model xIρ,t = BIρ,tat + wIρ,t , where BIρ,t and
wIρ,t

denote the matrix and vectors obtained after keeping
only the rows and entries of B and w with indices in Iρ,t.
Let g({sρ(t)}rρ=1) = BIρ,tat denote the signal component
in xIρ,t which depends on the target states sρ(t) due to the
dependence of BIρ,t,t on the target position pρ(t). Assuming
that targets move in well separated non-overlapping areas, the
observations xIρ,t will mainly be affected by the ρth target
term aρ(t)d

−2
j,ρ(t), while the other target terms in the sum in

(1) will be negligible. The reason is that every sensor j ∈ Iρ,t
is positioned close to the ρth target and dj,ρ′ ≫ dj,ρ for ρ′ ̸= ρ,
i.e., xj(t) ≈ aρ(t)d

−2
j,ρ(t) + wj(t) for j ∈ Iρ,t. A first-order

Taylor expansion of the observations {xj(t)}j∈Iρ,t
around the

state prediction ŝρ(t|t − 1) = [p̂T
ρ (t|t − 1), v̂T

ρ (t|t − 1)]T for
the dominant ρth target at sensor j gives

xj(t) ≈aρ(t)∥pj − p̂ρ(t|t− 1)∥−2+ (10)
aρ(t)∇bT

j,ρ(ŝρ(t|t− 1)) · [sρ(t)− ŝρ(t|t− 1)] + wj(t),

where

∇bj,ρ(ŝρ(t|t− 1)) :=
∂B(j, ρ)

∂sρ(t)

∣∣
sρ(t)=ŝρ(t|t−1) (11)

= 2
[
(pj,x − p̂ρ,x(t|t− 1))2 + (pj,y − p̂ρ,y(t|t− 1))2

]−2

× [pj,x − p̂ρ,x(t|t− 1), pj,y − p̂ρ,y(t|t− 1), 0, 0]T .

The cluster head Cρ,t updates the correction state estimate
ŝρ(t|t) for state sρ(t) and the MSE matrix Mρ(t|t) as

ŝρ(t|t) = ŝρ(t|t− 1) +Kρ(t)(xIρ,t − aρ(t)B̂Iρ,t), (12)
Mρ(t|t) = [I4×4 −Kρ(t)B∇(t)]Mρ(t|t− 1), (13)

in which B̂Iρ,t is the |Iρ,t| × 1 vector with entries {∥pj −
p̂ρ(t|t − 1)∥−2}j∈Iρ,t , B∇ is a |Iρ,t| × 4 matrix with rows
filled by the ∇bT

j,ρ(ŝρ(t|t−1)) for j ∈ Iρ,t, whereas Kρ(t) =
Mρ(t|t− 1)BT

∇(t)(σ2
wI|Iρ,t| +B∇(t)Mρ(t|t− 1)BT

∇(t))−1.

The EKF correction recursions (12) taking place at cluster
head Cρ,t require availability of the target intensity signal
aρ(t) and the measurement noise variance σ2

w. In practical
settings if aρ(t) is not available, an estimate âρ can be

used instead for the expectation E[aρ(t)]. During a start-
up phase each sensor j collects, say Ts, measurements
{xj(τ)}0τ=−(Ts−1) sampled sufficiently fast such that the r
targets’ can be considered approximately immobile. Then, av-
eraging the measurements of sensor j gives that for sufficiently
large Ts the expectation E[aρ(t)] can be estimated at sensor j
as âjρ ≈ ∥pj − pρ(0)∥2T−1

s

∑0
τ=(1−Ts)

xj(τ). The unknown
target position pρ(0) can be estimated using the ‘average’
location of the informative sensors, i.e., p̂ρ(0) =

∑
j∈Iρ,0

pj ,
at cluster head Cρ,0. The estimate p̂ρ(0) is sent from Cρ,0

to the sensors Iρ,0 which can then evaluate âjρ and transmit
it to Cρ,0 that forms the estimate âρ = |Iρ,0|−1

∑
j∈Iρ,0

âjρ.
A sample-averaging based estimate for the noise variance σ2

w
can be used as in Sec. III-A.

C. Joint Tracking and Sensor Selection

During the start-up phase the acquired sensor measure-
ments {x(τ)}0τ=−(Ts−1) are used by the distributed sparsity-
aware decomposition framework to determine the sets of
informative sensors {Iρ,0}rρ=1. One sensor in Iρ,0 will be
designated as the cluster-head Cρ,0 that collects from sensors
j ∈ Iρ,0 the corresponding measurements xj(0). Cluster-head
Cρ,0 uses the average ‘informative’-sensor location p̂ρ(0) =∑

j∈Iρ,0
pj to initialize the target position in the EKF. The

scheme in Sec. III-A interacts with the EKF recursions leading
to a distributed sensor-informative tracking (D-NIT) algorithm.

Suppose that at time t− 1 each cluster head {Cρ,t−1} has
available the EKF state predictions ŝρ(t|t−1) for ρ = 1, . . . , r.
Each predicted target position p̂ρ(t|t− 1) is utilized to select
a set of ‘candidate’ informative sensors, namely Jρ,t, such
that sensor j ∈ Jρ,t if ∥pj − p̂ρ(t|t − 1)∥ ≤ R. The radius
R through which Jρ,t are constructed is up to our control
such that the selected sensors are single-hop neighbors, and the
faster the target moves the larger should be chosen to ensure
that all target-informative sensors are incorporated in Jρ,t. Not
all sensors in Jρ,t will be target informative. The distributed
scheme in Sec. III-A is applied among the sensors in Jρ,t to
determine the target-informative sensor sets Iρ,t ⊆ Jρ,t for
ρ = 1, . . . , r. Performing the sensor-selection process (Sec.
III-A) in Jρ,t requires less computational and communication
complexity than when applied in the whole SN. The larger R
is, the more probable is to recover all informative sensors.

The cluster-head Cρ,t is selected as the sensor in Iρ,t,
which is closest to the predicted position of the ρ-th target and
collects i) the prediction state estimate and MSE covariance
ŝρ(t|t− 1) and Mρ(t|t− 1) from Cρ,t−1; and ii) the sensors
measurements xj(t) for j ∈ Iρ,t. Then, Cρ,t proceeds to
update the correction and prediction state estimates ŝρ(t|t),
ŝρ(t+1|t) as detailed in Sec. III-B. To ensure that all sensors
in Iρ,t can reach Cρ,t the transmission range of sensors further
than two-hops away is increased such that they can access Cρ,t

directly during the tracking phase.

Different from [7], the proposed informative sensor selec-
tion process here does not depend on the state and observation
model parameters in (1) and (2), and relies on the sensor
measurements to update the target-informative portion of the
SN, and it is not affected by the EKF estimates. The approach
for choosing active sensors in [7] relies on the prediction
state estimate and MSE covariance obtained through EKF.
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Fig. 1. Distance from target to estimate versus time.

Linearization in EKF may result errors in the tracking process
which can propagate to the sensor selection process in [7]
and deteriorate performance. In the same way, selecting the
closest sensors to the estimated target position is prone to
error propagation and cannot perform better than [7]. Further,
in D-SMD, the communication cost at sensor Sj is linearly
dependent on the number of single-hop neighbors Nj , while
in [7], all sensors send their data to the current cluster head,
leading to a communication cost which is proportional to the
total number of sensors m.

IV. NUMERICAL TESTS

Next, we test the tracking performance of D-NIT and
compare it with existing alternatives. We consider a connected
SN with m = 100 sensors randomly placed in the region
[0, 10]× [0, 10]. The sampling period T = 1s and σ2

u = 0.07
in (3), while σ2

w = 0.001 in (1), and the target-intensity signals
are Gaussian with E[a1(t)] = 1 and var(a1(t)) = 0.25. The
forgetting factor for updating Ŝx,t is set to γ = 0.1. The
sparsity-controlling coefficients in Sec. III-A are set as in [9].
The radius R = 1.5, while Ts = 20.

A setting with one target is considered first. We compare
the tracking performance of D-NIT with a scheme that com-
bines the sensor selection process in [7] with EKF. Different
from [7], the novel approach in Sec. III-A does not rely on the
model parameters in (1) and (2), and the EKF estimates. The
target position is initialized as in Sec. III-C, while the speed is
set v̂1(0|0) = [0.2 0.2]T and M1(0|0) = 50I4. Fig. 1 depicts
the distance error between the true and corrected position
estimates versus time; averaged over 150 Monte Carlo trials.
Fig. 1 depicts that as t increases the tracking error associated
with D-NIT stabilizes, though [7] experiences fluctuations of
increasing magnitude. The sensitivity of [7] during the EKF
linearization step is clear. The comparison was done such that
D-NIT and [7] have on average the same number of active
sensors. The tracking performance achieved by D-NIT is also
better than the standard EKF approach, where all m = 100
sensors are active. The reason is that D-NIT utilized only a few
sensors at t, i.e., |Iρ,t| < 8, thus the linearization process is
more robust since less noise (informative measurements have
high SNR) is introduced. D-NIT achieves better performance
while using less than 8% of the SN.

Next, a two-target scenario is considered. It should be men-
tioned that [7] cannot handle multiple targets even if they
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Fig. 2. Tracking two targets via D-NIT. Time instant t = 30s is depicted.

affect non-overlapping regions of the SN. Fig. 2 depicts the
informative sensors associated with the two different targets
at t = 30; σ2

u = 0.002 here. Clearly, the informative sensors
(green and purple dots) are always close to the true position of
the targets; the purple dots correspond to cluster heads. D-NIT
is able to follow closely the two different tracks while using
a small number of sensors.

V. CONCLUDING REMARKS

A distributed algorithm was put forth that performs target
tracking while using only a few informative sensors in the
SN. The task of determining target-informative sensors boils
down to a distributed sparse matrix decomposition problem
that is combined with EKF to track multiple targets moving
in non-overlapping areas. Simulations show that the proposed
technique achieves, even when using a few sensors, better
performance compared to related alternatives.
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