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Abstract—We develop a nonlinear sparse X-ray computed tomography
(CT) image reconstruction method that accounts for beam hardening effects
due to polychromatic X-ray sources. We adopt the blind scenario where
the material of the inspected object and the incident polychromatic source
spectrum are unknown and apply mass attenuation discretization of the
underlying integral expressions that model the noiseless measurements. Our
reconstruction algorithm employs constrained minimization of a penalized
least-squares cost function, where nonnegativity and maximum-energy con-
straints are imposed on incident spectrum parameters and negative-energy
and smooth /1 -norm penalty terms are introduced to ensure the nonnegativity
and sparsity of the density map image. This minimization scheme alternates
between a nonlinear conjugate-gradient step for estimating the density map
image and an active set step for estimating incident spectrum parameters.
We compare the proposed method with the existing approaches, which ignore
the polychromatic nature of the measurements or sparsity of the density map
image.

I. INTRODUCTION

In nondestructive evaluation (NDE) and medical imaging, there is
a need to correct beam hardening effects, which occur because of
the polychromatic nature of the X-rays generated by vacuum tubes
[1, 2]. Photons at lower energies have larger attenuation rates, thus
‘hardening’ the X-ray beam as it travels. Traditional linear-model
based reconstruction schemes ignore this effect and, consequently,
exhibit beam hardening (e.g., cupping and streaking) artifacts [3,
4]. Beam hardening correction methods can be categorized into pre-
filtering, linearization, dual-energy, and post-reconstruction approaches
[5]. Reconstruction methods have recently been developed in [6-8] that
aim to optimize nonlinear objective functions based on the underlying
physical model; [6, 7] assume known incident polychromatic source
spectrum and imaged materials, whereas [8] considers a blind scenario
with unknown incident spectrum and imaged materials, but employs an
excessive number of parameters and suffers from numerical instability
[9, Sec. 32.1]".

In [10], we proposed a parsimonious measurement model
parametrization for the blind scenario with unknown incident spectrum
and a single wunknown material; this parametrization is based on
discretizing the Beer’s law over mass attenuation rather than photon
energy, thereby reducing the number of functions to estimate from
two to one: compare (5) with (2) in [10]. In this paper, we present
a nonlinear X-ray computed tomography (CT) reconstruction algorithm
that performs constrained minimization of a penalized least-squares
(LS) cost function based on the measurement model in [10], where
nonnegativity and maximum-energy constraints are imposed on the
incident spectrum parameters and additive penalty terms are introduced
to ensure nonnegativity and approximate sparsity of the density map
image that we wish to reconstruct. To the best of our knowledge, this
is the first physical-model based method for simultaneous sparse image
reconstruction and beam hardening correction.

We introduce the notation: In, 1nx1, and Onx1 are the identity
matrix of size N and the N x 1 vectors of ones and zeros, respectively;

! Alarfaj was not successful implementing the blind method in [8] and discusses
some of the obstacles in [9, Sec. 3.2.1]; consequently, [9] reports a non-blind
version of [8] with known incident spectrum and object materials.
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|-, ||-||2, and “T are the absolute value, Euclidean norm, and transpose,

respectively. Furthermore, (x), = max{z,0} is the positive-part
operator, @ > b (a > b) denotes that all elements of @ — b are
1, yeA,
0, otherwise
indicator function. Define the elementwise logarithm, and positive-part
operators of an IN-dimensional real vector x = [ml,...,;rN}T as
Ino(x) = [Inzy,...,Inzn]", and (®), =(z1)+;.- -, (zn)4]"

I1I. BEAM HARDENING CORRECTION MODEL

nonnegative (positive), and 1a(y) = denotes the

An X-ray CT scan consists of multiple projections with the beam
intensity measured by multiple detectors. We discretize the continuous
measurement model over space and mass attenuation using p pixels and
J mass attenuation bins (see [10, eq. (5)]) and model the N x 1 vector
of log-scale measurements at all detectors and projections as [10]

z=[-In&,...,~n&Ex]" = F(0) + n = —Ino[A()Z] + n (1)

where {&-}f\il are the noisy energy measurements, the (¢, 7)th element
of the N x J matrix A(a) is

A;j(a) = exp(—®(yap;y), 2)
and

e ¢ is an unknown p X 1 vector representing the two-dimensional
(2D) density map image that we wish to reconstruct,

e Z = [Th,...,Zs]" is the J x 1 vector of unknown incident
spectrum parameters describing the discretized incident X-ray
spectrum as a function of mass attenuation (see [10, eq. (7) and
Fig. 1]),

e ®(;) isaknown px1 vector of weights quantifying how much each
pixel of o contributes to the X-ray attenuation on the straight-line
path corresponding to the ¢th measurement,

o o < p1 < -+ < py are known mass attenuation discretization
points, and

e T is zero-mean additive white noise.

Our goal is to estimate the image and incident energy density parameters

0= (a,T). 3)
Note that & = [®(1)P(q) - - <I>(N)]T is the N X p Radon transform
matrix for our imaging system. For Gaussian 72, noisy energy measure-
ments {&£;}, follow the lognormal distribution, see (1).

Constraints on density map image o. The nonnegativity of the

density map that we wish to reconstruct yields the following constraint:

a = 0px1. “
We also assume that the image « is approximately sparse in the discrete

wavelet transform (DWT) domain, i.e., U7« is an approximately sparse
vector, where

U= ["/’1 1/’2

is a p X p inverse DWT orthogonal matrix satisfying U7 ¥ = @7 =
I,,. Note that «t, £(0), and ¥ can be easily adjusted to accommodate
the prior geometric contour information of the inspected object [11].
Constraints on incident spectrum Z. We assume that the shadow
of the inspected object is completely covered by the receiver array and

W, ] 5)
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that we know the upper bound Z;f,, on incident X-ray energy (obtained,
e.g., from energy measurements at the detectors that have a line-of-sight
view of the X-ray source); this assumption and the nonnegativity of the
incident spectrum yield the following constraints on Z:

J
SNz, =1"T<1}, ZI=0 ©)

j=1
which can be written as a single vector linear inequality constraint as
BT =b (72)

where
T . T
B=[lis —Jlnal . b=[00a —HT] . ab)

We propose the following penalized LS cost function based on the
measurement model (1) and the above image constraints:

Lua(8) = iz = FOIB + 2] () |2 +u D/ @T )2+
i=1
®

where v and w are scalar tuning constants for the signal nonnegativity
and sparsity penalty terms and £ > 0 is a smoothing factor in the signal
sparsity penalty term, chosen in practice to be a small positive constant.
The smooth ¢1-norm penalty approximation in the third summand makes
gradient-descent methods applicable to minimizing (8) with respect to
o, see also [12] where this approximation was introduced to impose
signal sparsity in compressed sensing magnetic resonance imaging
(MRI). Lustig et al. [12] employ a linear signal model; in contrast,
our measurement model is nonlinear with additional parameters and
constraints.

Interestingly, (8) is biconvex with respect to ac and Z in a biconvex
set, see [13] for an introduction to biconvex functions and sets.

Adding the incident spectrum constraints (7a) leads to the following
constrained minimization with linear inequality constraints:

o min  Lu.u(6) )

that we wish to solve.

III. MINIMIZATION ALGORITHM

We now present our algorithm for performing the constrained penal-
ized LS minimization in (9). Due to the difference in size and handling
of the constraints on a and Z, we adopt two different schemes for
their estimation and then combine these schemes in stepwise-descent
manner.

In [10], the constraints on Z in (7a) were imposed by the logarithmic
barrier function via interior-point method [14, Sec. 11.2]. Here, we im-
pose the linear inequality constraints (7a) via an active set method [15,
16] (see also [17]), which removes barrier-function tuning constants,
reduces the number of energy density parameters, and is faster than the
interior-point method.

Define the gradient vectors and Hessian matrices of the cost function
(8) with respect to & and Z, respectively:

_ 0L,u(0) _ P Lu(6)

ga(e) - 8(] ’ Ha(e) - aaaaT ’ (loa)
_ 9Lvu(9) _ 0’Luu(0)

92(0) = =522 Hz(9) = il (0w

where the gradient and Hessian in (10b) are not functions of the tuning
constants v and u.

For a row index set @ C {1,2,...,J+ 1} of the matrix B in (7b),
we denote by card(Q) the cardinality of @ and by Bg the card(Q) x J
submatrix of B consisting of rows of B with indices in ). Denote by
By and b, the gth row of B and the gth element of b, respectively.
Define the J x (J — card(Q)) full rank matrix M¢g whose columns
span the null space of Bq, i.e., BqMqg = 0.

We descend (8) by alternating between 1) and 2):
1) the nonlinear conjugate-gradient step for o [18, Sec. 14.1]:
9a(0)d"

ol — o _ Sam (11a)
where
0" = (a7 (11b)
e =g, (0") —g, (6" (11¢)
BY = maX{O, M} (11d)
lga(0°~)I3
d" = ga(e(i)) + B(i)d(i—l) (11e)

where 0 < so < 1 is the step size for updating o determined via
backtracking [19, Sec. 9.7] to guarantee the descent of (8) and ¢
denotes the iteration index;

2) the gradient projection active-set step for I, where « is fixed and
set to a("t1) obtained in 1) (see also [16] and [15, Ch. 5.2]):

a) (initialize) assign Fé(l) — (a(i+1)7l'(i)) and Q < Q¥ where
@ denotes the active set, i.e., the row index set of B with the
equality constraints, BoZ = bg, hold,

b) (compute the steepest descent step within the active set)

~(i -1 ~(3
p=—Mo(MEHZ(8")Mg)  MEgz(6") (120

where p is the steepest descent step of the quadratic approxi-
mation of our objective function (8) with respect to Z, subject
to the active-set constraint in the null space of Bg,

c) (compute Lagrange multipliers)

)+ Hz(6")p (12b)

Sl = (BeBy) 'Bogz  (12¢)
where A is a Lagrange multiplier vector,

d) (prune active set) if there exists an index k € (@ whose
corresponding Lagrange multiplier is negative (i.e., Ag, < 0,
where g maps the element k in @ to the corresponding row
index within the matrix Bg), then

« Q= Q\Fk,
e go back to step 2b,

~ (%)
gr = 91(9
A=[A,..

otherwise continue to 2e,
e) (compute the largest possible step size for updating Z)

max S

(12d)
B(Z()4sp)=b

ST, max — arg

which is the largest step size for updating Z that satisfies the
constraints in (7a),
f) (compute the step size for updating Z) determine sz via
backtracking, initialized with min{1, sz wax},
g) (grow active set) if sz = sz uax then
o find index g of the newly activated constraint, i.e., ¢ €
{1,2,...,J+1}\ @ such that By (Z + sz,uaxP) = bq,
« update the active set accordingly: Q + Q U {q}.
h) update the iterate of Z and its active set:
Y IO 4 7 p (12¢)
Q" Q. (126)
Here, 1) aims at unconstrained minimization of the penalized LS cost
function in (8) with respect to o whereas 2) aims at constrained
minimization of the LS cost function with respect to Z. [The constraints
(7a) do not involve o and penalty terms in (8) are not functions of Z.]
In step 1), we seek an update of « that reduces L, ,((cx,T))
and apply the nonlinear conjugate gradient method to achieve this
goal. In the nonlinear conjugate gradient step (11), we use the Polak-
Ribiere formula (11d), which restarts the conjugate gradient iteration

245



2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

Figure 1: Illustration of the gradient projection active set step.

by forgetting the past search directions when gz(ﬂ(i))e(i) is negative
[20] to keep « from going uphill. Since Hq (0) has the form

Ha(0) = @"W(0)® + vdiag (1(— o0y () + uPU ()T (13)
where both W (0) and U(cx) are diagonal matrices, the denominator
in (11a) is computed efficiently by computing and storing ®d? and
vrd,

In step 2), we seek an update of Z that reduces L, .((cx,T))
subject to the inequality constraints (7a). To achieve this goal, we
apply the gradient-projection active set method, which searches for
active restrictions (defined as restrictions that are fulfilled with equality)
and meanwhile approximates the quadratic steepest descent step for the
simplified problem under these equality constraints.

Fig. 1 illustrates the gradient projection active-set step in 2). The
plane is the space represented by the elements of vector Z, where
the gray shadow is defined by the constraints, BZ > b. The solid-
and dashed-line ellipses depict contour graphs of the objective function
Ly,u((cx, Z)) and its quadratic approximation around L, ., ((c, W),
respectively. For the current active set is Q, Z = Z*)+p minimizes the
quadratic approximation under the active constraints and, consequently,
the expected gradient at Z, B(:‘g)\, is perpendicular to p. The active
set (Q chosen by step 2d) guarantees that Bg)\ ultimately points in
the correct direction, the same side with BQZ > bg. In this particular
example, () remains unchanged and the largest possible step size Sz max
is greater than 1 because Z does not go beyond the right boundary of
the shadow area. Consequently, the backtracking search for sz in step
2f) is initialized by 1. In other cases, when Z goes beyond the right
boundary, one more constraint will be added to the active set; when
BCTQ A points to the opposite direction, the current active constraint will
be deactivated.

The increment vector p is determined by projecting the gradient

9z(0
Hz(é ' ), which is equivalent to the update step in Jamshidian’s
gradient projection (GP) active set algorithm. This step is also similar to
that in the constrained scoring algorithm [17], where Fisher information
matrix for Z is used instead of the Hessian matrix, see (12a).

Note that the steepest descent vector p works very well as an
increment candidate (or is a good increment candidate) when the
quadratic approximation fits the objective (8). In practice, the step size
sz is usually restricted by the linear constraints (7a) and backtracking
line search procedure.

(Z?) onto the constraints’ null space (12a) in the metric of

IV. NUMERICAL EXAMPLES

We construct a simulation example based on a binary 1024 x 1024
image in Fig. 2a that corresponds to a real X-ray CT reconstruction
of a metal casting, obtained by thresholding the pixel values of a
reconstruction in [21, Fig. 5(b)]. The inspected object, assumed to be
made of iron, contains irregularly shaped inclusions. We simulated the
polychromatic sinogram using the mass attenuation of iron and incident
spectrum in Fig. 2b and constructed the Radon transform and adjoint

30.3
Jo.2
1 ©
Jo1
—1 N i L, N E)
107907350 80 110 140
e/keV
(b)

Figure 2: (a) Original binary image of size 10242 and (b) mass
attenuation coefficient of iron (Z=26) and the incident X-ray spectrum
density as functions of the photon energy.

matrices ® and &7 using nonuniform Fast Fourier Transform (NUFFT)
[22] with the circular mask [11]. We compare

« the standard filtered backprojection (FBP) method,

o the proposed reconstruction obtained upon convergence of the
iteration (11)—(12) for solving the constrained penalized LS (CPLS)
problem (9) (labeled cpLS), and

o our method in [10] (labeled MAC), which uses the mass attenuation
coefficient (MAC) discretization to correct for beam hardening but
ignores signal sparsity, see also the discussion in Section III.

To initialize the CPLS and MAC iterations, we chose the same o and
Z that we employed to initialize the MAC method in [10, Sec. 3].
The value of po can be an arbitrary positive number and we selected
the remaining J = 17 mass attenuation discretization points {1; }3’:1
using a geometric sequence p; = poq’ that spans the range py/pu1 =
10% with the common ratio ¢ = (p./p1)* /™Y, this selection is
sufficiently wide to cover the range of significant us, see Fig. 2b.

Further, we choose I,iV{‘AX = 1 based on the (normalized) energy

measurements at the detectors that have a line-of-sight view of the X-
ray source (see [10, eq. (12)]) and set the nonnegativity and sparsity
tuning constants to

v=1, wu=15x10" (14)

which yield good reconstruction performance. The nonnegativity and
logarithmic barrier tuning parameters for the MAC method have also
been chosen for good performance and set as in [10]. We run 2000
iterations for both CPLS and MAC methods.

We use the relative square error (RSE)

aTa 2
true ) (15)

l[ellz]lemell2
as the reconstruction performance metric. Note that (15) is invariant to
scaling of & and that the blind CPLS and MAC reconstructions can be
determined only up to a scaling factor because the (arbitrary) value of
the discretization point fo can be absorbed by o, see (2).

Figs. 3a-3c show the reconstructions and corresponding RSES
achieved by the three methods. Figs. 3d and 3e show the 500th and
700th rows of the reconstructed images and the true image in Fig. 2a.
Note that the 500th row cuts through the ‘bay area’ whereas the
700th row cuts through the region with inclusions. The MAC and CPLS
reconstructions can be determined only up to a scaling factor, which
explains the mismatch between the reconstructed and true low-signal
levels in Figs. 3d and 3e.

Since FBP does not account for the beam hardening effect, it achieves
a fairly high RSE due to the cupping and streaking artifacts [3, 4]:
decreasing material density towards the center of the inspected object
and existence of nonzero object density in the ‘bay area’ of the object
where the true density is zero. Both CPLS and MAC correct the beam

RSE:lf(
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Figure 3: The (a) FBP, (b) MAC and (c) CPLS reconstructions of full
180-projection data with their (d) 500-th and (e) 700-th row profiles
compared to that of true image.

hardening effect successfully and achieve RSEs that are an order of
magnitude smaller than FBP. Imposing approximate signal sparsity has a
denoising effect on the resulting reconstruction and significantly reduces
the corresponding RSE, compare Figs. 3b and 3c and the row profiles
of cpLs and MAC in Figs. 3d and 3e.

V. CONCLUSION

Further research will include analyzing the convergence of the
reconstruction algorithm in Section III, e.g., establishing conditions
under which it converges to a local maximum of (9); we expect that
the biconvexity of (9) will be useful for such analysis. We will also
generalize the proposed mass attenuation discretization and sparse signal
reconstruction methods to handle multiple materials.
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