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Abstract—We consider minimization problems that are
compositions of convex functions of a vector x ∈ RN

with submodular set functions of its support (i.e., indices
of the non-zero coefficients of x). Such problems are in
general difficult for large N due to their combinatorial
nature. In this setting, existing approaches rely on “con-
vexifications” of the submodular set function based on
the Lovász extension for tractable approximations. In this
paper, we first demonstrate that such convexifications can
fundamentally change the nature of the underlying sub-
modular regularization. We then provide a majorization-
minimization framework for the minimization of such
composite objectives. For concreteness, we use the Ising
model to motivate a submodular regularizer, establish the
total variation semi-norm as its Lovász extension, and
numerically illustrate our new optimization framework.

I. INTRODUCTION

We consider the following optimization problem

min
x∈RN

f(x) + λR(supp(x)), (1)

where f is a closed, convex function, R is a set function,
supp(x) = {i : xi 6= 0} is the support function, and
λ ≥ 0 is the regularization parameter. Formulation and
analysis of (1) are important in several applications from
compressive sensing to data-mining, and from medical
imaging to array signal processing.

Finding even local optimal solutions to (1) is generally
difficult when N is large, since the problem includes a
combinatorial component. To be able to proceed further,
we assume that f has L-Lipschitz continuous gradient
(i.e, ∀ x,y ∈ RN , ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖) and
that R is a submodular set function (cf., Sect. II).

While R leads to computational difficulties, its pres-
ence is key in many problems revolving around model-
based sparsity [1]. As an example, consider a com-
pressive sensing scenario where we observe compressive
samples y ∈ Rm of a “clustered” sparse vector x ∈ RN ,
through a dimensionality reducing matrix A [2]. In this
case, f(x) = ‖y−Ax‖22/2. Then, the clustering model
can be naturally encoded on a graph G = (V, E) via a
submodular function based on Ising model

RISING(S) =
1

2

(
|E| −

∑
(i,j)∈E

sisj

)
, (2)

where s ∈ RN is an indicator vector for a set S such
that si = 1 if i ∈ S and si = −1, otherwise. There are
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many other structured models that can be captured in this
fashion: cf., [3] for a review.

The prevailing approach in circumventing the diffi-
culty of solving (1) is to convexify the set function so that
the overall problem is convex. When R is submodular
and monotone (i.e., ∀S ⊆ T , R(S) ≤ R(T )), this
convexification is achieved through the Lovász extension
[4]. While convexity by itself does not necessarily imply
efficient optimization, the convexification of monotone
submodular functions leads to tractable convex optimiza-
tion. In fact, [5] shows that the proximal operator of this
convexification is equivalent to solving an unconstrained
submodular minimization problem, where the best prov-
able complexity is O(N5T + N6) (T is the function
evaluation complexity) [6]. In this setting, the minimum
norm-point algorithm [4], which does not have a worst
case complexity, usually scales as O(N2) in practice.

Theoretical justifications of the convexification ap-
proach are often based on the success story of the `0 and
`1 equivalence [7]. For instance, we can use R(S) = |S|
to penalize the sparsity of the solution, which leads to
an NP-hard problem. However, the convex envelope of
R on the unit `∞-ball in this case is the `1-norm of the
vector x, yielding the LASSO problem, whose solution
quality is well-understood theoretically. As a result, the
authors in [5] propose a structured regression framework
based on the convexification of submodular monotone
functions, which has been quite popular in the literature.

We illustrate that the `0-`1 type of equivalence does
not necessarily hold for general submodular set func-
tions. One must be very careful in stating the equivalence
of solutions of the problem (1) to the one based on
convexifications of R. Similarly, it is important to be
aware of the fact that support consistency results [5] are
typically given with respect to the convexification rather
than to the discrete structured sparsity model.

To clarify the subtleties, we first establish that the
convex envelope of the Ising penalty (2) is the zero
function. The Lovász extension is then the second most
natural convexification; we provide a novel elementary
proof that the Lovász extension of the Ising penalty is
the anisotropic total variation semi-norm. We then give
an example where none of the solutions of (1) and its
convexification coincide for any non-zero regularization
parameter λ. To tackle (1), we provide an efficient
majorization-minimization scheme that is guaranteed to
converge. Numerical results show that solutions returned
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by this algorithm upon convergence can have significant
recovery benefits as compared to the convex solutions.

II. PRELIMINARIES
We denote scalars by lowercase letters, e.g., λ, vectors

by lowercase boldface letters, e.g., x, matrices by bold-
face uppercase letters, e.g., A, and sets by uppercase
script letters, e.g., V . We denote the ground set of N
indices by V = {1, . . . , N}.

a) Submodularity: A set function F : 2V → R is
submodular iff R(S) +R(T ) ≥ R(S ∪ T ) +R(S ∩ T )
for all S, T ⊆ V .

b) Lovász extension: Given a submodular function
R such that R(∅) = 0, we define its Lovász extension
r as follows. Given x ∈ RN , we sort its components in
decreasing order xj1 ≥ · · · ≥ xjN and define r(x) =

N−1∑
k=1

R({j1, . . . , jk})(xjk − xjk+1
) +R(V)xjN (3)

We can treat R as a function on the boolean hypercube
{0, 1}N , and r forms its convex closure on [0, 1]N [8].

c) Convex biconjugate of the Ising model: In the
sequel, we focus on the Ising model example, as defined
in (2). [5] shows that the convex biconjugate [9] of
R(supp(x)) on the unit `∞-ball, for R any submodu-
lar function, is R∗∗(x) = minδ∈[0,1]N ,δ≥|x| r(δ). Thus,
when R is non-decreasing, its convex envelope on the
unit `∞-ball is r(|x|), but in the Ising penalty case, which
is not monotonic, the biconjugate is the zero function. As
a result, we consider another convexification: the Lovász
extension. This convex extension is tight in the sense that
it forms the convex closure, i.e., the largest convex real
function on [0, 1]N that always lower bounds R.

d) The Lovász extension of the Ising model: Let
G(V, E) be a graph with one node for each of the
support indices and whose edge set E contains the edges
connecting neighboring variables. Let δ(S) = {(i, j) ∈
E : i ∈ S, j /∈ S} be the cut-set induced by S. Since
sisj = −1 if (i, j) ∈ δ(S) and sisj = 1 otherwise, we
have that RISING(S) = |δ(S)|. RISING favors sets whose
elements are clustered on the given graph. Cut functions
are submodular [4], therefore RISING is submodular.

Proposition 1. The Lovász extension of RISING is the
anisotropic discrete Total Variation semi-norm ‖x‖TV =∑

(i,j)∈E |xi − xj | .

Proof: Let n = |E| and ∀k ∈ V and ` ∈ [1, n],
let σk(e`) = 1 if e` ∈ E is cut by {j1, . . . , jk} and
σk(e`) = 0 otherwise, then:

rISING(x) =

N−1∑
k=1

|δ({j1, . . . , jk})|(xjk − xjk+1
)

=

N−1∑
k=1

n∑
`=1

σk(e`)(xjk − xjk+1
)

=

n∑
`=1

∑
k∈[s,t]

(xjk − xjk+1
) := ‖x‖TV ,

where the first equality follows from the definition of the
Lovász extension (3) since RISING(V) = 0, and the third
equality holds since for any ` ∈ [1, n], there exists a
range of indices [s, t], such that e` is cut by {j1, . . . , jk}
for k ∈ [s, t]. Indeed, let e` = (i, j), then js = i and
jt+1 = j, σk(e`) = 1 for k ∈ [s, t] and 0 otherwise.

III. TO CONVEXIFY OR NOT TO CONVEXIFY?

We now elucidate how convexification can radically
alter the solutions of (1). For concreteness, we use RISING

as defined in (2). In this case, since RISING(V) = 0, the
globally optimal minimizer of (1) for f(x) = 1

2‖y −
Ax‖22 for any λ is simply the least squares solution
(assuming it has full support) x̂ = A†y, where A† is the
pseudo-inverse. Now, instead we substitute the Lovász
extension of RISING and consider the convex problem

min
x∈Rp

1

2
‖y −Ax‖22 + λc‖x‖TV , (4)

for a regularization parameter λc. It is clear that unless
λc is zero, the solutions of (1) and (4) are never equal.

Such considerations are also discussed in [10], which
show that while many group-based discrete structured
sparsity models have convex relaxations (many of which
are exactly the Lovász extensions), their relaxed solutions
do not necessarily correspond to the solution we seek.
The work [10] goes one step further to show that if we
could use convex relaxations in these problems, then we
can have polynomial time algorithms for the weighted
maximum coverage problem, which is NP-hard.

Furthermore, while the Lovász extension (3) is defined
over the entire real domain, it is tight only on the unit
hypercube and most penalties R(supp(x)) are not con-
strained there. Also note that R(supp(x)) is symmetric
around the origin, while the Lovász extension is not,
which makes it vulnerable to sign flip errors. On the other
hand, composing the Lovász extension with the absolute
value is symmetric, but the resulting function is only
guaranteed to be convex in the case of monotonic sub-
modular functions. For example, ‖|x|‖TV is not convex.
In the numerical experiments, we exploit this weakness
to show that the TV norm has poor performance when
we perturb the signal with random sign flips.

IV. OUR OPTIMIZATION FRAMEWORK

We propose an iterative majorization-minimization
scheme for solving (1) in Algorithm 1. Given its Lips-
chitz constant L, we have the following bound on f(x):

f(x) ≤ f(x′)+〈∇f(x′),x−x′〉+L
2
‖x−x′‖22 := Q(x,x′)

(5)
for all x,x′ ∈ RN . With this majorizer, we obtain an
easy-to-deal-with convex quadratic upper bound on f(x).

It turns out that this bound corresponds to a modular
set function M , which satisfies the submodularity defini-
tion in Section II with equality for all sets S and T . To
see this, we compute the optimal minimizer of Q(x,x′)
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Fig. 1: Shepp-Logan phantom: Original (Left) and Dirty (with
randomized signs)

for any given support S. Simple calculus shows that the
minimizer is given by x̂Sc = 0 and

x̂S = x′S −
1

L
∇f(x′)S . (6)

By substituting x̂S back into the upper bound, we obtain

f(x) +R(S) ≤ C − L

2

∑
i∈S

(x′i −
1

L
∇f(x′)i)2 +R(S)

:=M(S) +R(S), (7)

where C is a constant. In (7), we deliberately kept
the continuous variable x on the left hand side, while
the right hand side only depends on S. Note that this
inequality relies on the explicit mapping S → x̂ of any
given set S to a continuous solution x̂ through (6).

Minimization of the set majorizer in (7) is efficient,
because the upper bound M + R is submodular. While
general submodular minimization algorithms may not
scale gracefully with the problem size, some special
cases of submodular functions have very efficient al-
gorithms. For instance, if the submodular regularizer
R is graph-representable, the optimization can be done
efficiently via min s-t-cut algorithms. For the Ising model
based on a lattice, we can solve the min s-t-cut in
O(N1.5 log(N) log(U)) (U is the max arc weight) [11].
Based on the above, we have the following guarantee

Proposition 2. Algorithm 1 converges.

Proof: Based on the definitions above, we have
f(xi+1) +R(Si+1) ≤ f(x̂Si+1) +R(Si+1) (8)

≤ Q(x̂Si+1 ,xi) +R(Si+1) (9)

≤ Q(x̂Si ,xi) +R(Si) (10)

≤ Q(xi,xi) +R(Si) (11)

= f(xi) +R(Si), (12)

where (8) holds because xi+1 minimizes f(x) over the
set Si+1, (9) follows from the bound (5), (10) holds
because Si+1 minimizes Q(x̂S ,x

i)+R(S), while (11) is
due to the fact that x̂Si minimizes Q(x,xi) over the set
Si. Hence, we have f(xi+1)+R(supp(xi+1)) ≤ f(xi)+
R(supp(xi)). Therefore, at each iteration the objective
value does not increase and it is always bounded below
by 0, hence it converges.

Once we find the optimal set S∗, we minimize f over
this set. Finally, as the iterations of the algorithm typ-
ically produce sparse iterates, we use block-coordinate
descent to accelerate convergence in Algorithm 1.

Algorithm 1 Majorization-minimization algorithm

Input: x0 ∈ RN
while not converged do
x̂S = xiS − 1

L∇f(x
i)S

Si+1 = argminS∈2V Q(x̂S ,x
i) +R(S)

xi+1 = argminx:supp(x)=Si+1 f(x)
end while

TABLE I: A summary of the regularizers used in experiments

Model Regularizer
Ising plus cardinality (IC) λRISING(supp(x)) + τ | supp(x)|
Total Variation (TV) λ‖x‖TV

Sparse TV (TV + L1) λ‖x‖TV + τ‖x‖1

V. NUMERICAL EXPERIMENTS

We perform a compressive sensing experiment to
higlight the differences between solutions of (1) and
its convexifications. We take dimensionality reducing
measurements of a structured sparse x via A and then
seek to minimize f(x) = 1

2‖y−Ax‖22 with a regularizer
matched to the structure of x. Our linear measurements
A are randomly subsampled Fourier coefficients of x,
and hence, the Lipschitz constant of f is L = 0.5.

We compare the performance of three regularizers as
summarized in Table I. Since the Ising model (2) by itself
yields the least squares solution, we add a cardinality
constraint to promote sparsity. The new regularizer is
still submodular, and its convexification is the sparse
total variation regularizer, i.e., the TV semi-norm plus the
`1-norm. We also include the total variation regularizer
alone to emphasize that its solutions are significantly dif-
ferent from regularization with the Ising model directly.

We consider the standard Shepp-Logan phantom im-
age of size 256×256 pixels. The resulting image is sparse
(K = 8084 non-zero pixels) with its coefficients forming
constant value clusters, see Fig. 1(left). This image suits
the TV models that encourage the signal coefficients to
have constant values. We then randomly flip the signs
of the coefficients, obtaining the Dirty phantom, Fig.
1(right). In this case, the TV models can enforce an
incorrect structure as the true coefficient values are not
smooth. However, the sign change does not affect the IC
penalty, since it is agnostic to the coefficients values and
only cares about whether they cluster.

We show recovery performance using m = 1.5K
samples, which is less than the theoretically minimum
number of samples for `0 recovery (i.e., m = 2K).
Hence, without the structured sparsity model, it is im-

TABLE II: Relative Recovery Errors

Model Original phantom Dirty phantom
TV 0.25 0.13
TV + L1 0.005 0.14
TV (debiased) 8.8 ∗ 10−12 0.013
TV + L1 (debiased) 8.8 ∗ 10−12 0.027
IC 1.2 ∗ 10−10 1.4 ∗ 10−11
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Fig. 2: Clean Phantom recovery (Top): Debiased and IC perform well, TV and TV + L1 do not set the background exactly to zero. Dirty Phantom
recovery (Bottom): TV does not perform well. Debiasing helps, but does not recover the correct support. The colorbar changes with each figure.

possible to do tractable guaranteed recovery. We measure
performance with the relative recovery error, E = ‖x̂−
x‖22/‖x‖22, where x̂ is the estimated image and x the
original one. The regularization parameters λ and τ have
been tuned according to E to yield the best possible
result for each model. The convex models might not
yield exactly sparse solutions due to numerical issues. To
level the playing field in favor of the convexifications, we
adopt the debiasing heuristic of finding the support of the
coefficients that are greater in magnitude than a thresh-
old. We do this by visually inspecting the histogram of
the solutions. The debiased estimate is then given by the
least squares solution on the estimated support. Fig. 2
presents the recovered images for the original and Dirty
phantom respectively, while Table II contains the relative
recovery errors. In the figures, we use the log scale of
the coefficients’ absolute value to accentuate the errors.

The debiased estimates perform well in recovering the
standard image, while the TV and TV + L1 penalties
fail to set the background exactly to zero. Our method
recovers the image with no need for debiasing since it
correctly identifies the support of the signal. It is impor-
tant to note that in the original phantom, the values of
the pixels inside the eyes of the phantom are not exactly
zero. Hence the Ising model actually perfectly recovers
the entire support. As expected, on the Dirty Shepp-
Logan, TV does not perform well. Debiasing helps in this
case too, but it is not able to recover the correct support.
We also note that our algorithm converges with 4 to 5
iterations, while TV and TV + L1 require thousands of
iterations, because the proximal operator of TV cannot
be computed in closed form.

VI. CONCLUSIONS

Model-based sparse models can make an enormous
impact in diverse applications revolving around linear
regression problems, such as simultaneously reducing the
number of compressive samples in data acquisition while
improving noise robustness. Unfortunately, the descrip-
tions of many structured sparse models are inherently

discrete, and lead to—seemingly—difficult combinato-
rial optimization problems. On this front, the prevailing
approach to circumvent the computational difficulties has
been to convexify the underlying discrete models. In this
paper, we first show that convexifications can radically
alter the underlying structure in regression problems,
whose solutions should be interpreted with care. We
then provide a fully discrete optimization framework that
exploit the structures in the objectives. Our numerical
results indicate that the direct discrete solutions can be
significantly better than the solutions based on convex
relaxations. The missing piece in our framework is the
quantification of the solutions obtained by our proposed
algorithm and how they relate to the global minimum of
(1), which is an interesting research direction.
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