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Abstract—In this work we introduce a novel track formation
procedure to overcome the performance losses of the two-stage
track-before-detect architecture in [1] when targets are closely-
spaced. The proposed strategy adopts a dynamic program-
ming algorithm which successively estimates the trajectories of
prospective targets and removes the corresponding measurements
from the input data, and which does not need a discretization
of the state space. Experimental results demonstrate that its
detection capabilities are almost independent of the mutual
distance of the targets and equal to those of the system in [1]
when targets are widely-spaced.

I. INTRODUCTION

Multi-frame detection (MFD), where multiple, consecutive
scans (or frames) are jointly elaborated before thresholding, is
an effective strategy used in radar applications to detect targets
with low signal-to-disturbance ratio (SDR). In the presence
of moving targets, MFD requires track-before-detect (TBD)
techniques to correctly correlate data over time [1]-[12]. The
main limitation of MFD/TBD is the heavy computational cost
when the number of sensor resolution elements is large and
target maneuvers are allowed.

In order to limit complexity and allow real-time implemen-
tation, the authors in [1] proposed the detection architecture
shown in Fig. 1. At each scan n, the Detector and Plot-
Extractor receives the raw data collected by the sensor and
produces a list of candidate detections (or plots), say S,,. The
plot-list S,, is stored in a matrix, whose k-th row is the k-th
plot at scan n, defined as si ., = (tk,n Pk,n Akn Nin), With
tk,n the time instant at which the plot has been taken, py
the position measurement (usually the pair range-azimuth, but
it may also include range-rate and/or elevation measurements
if available), Ay, the amplitude of the received signal, and
Ny, the power of the disturbance (thermal noise plus clutter).
The number of plots at scan n is D,,, and S, is not defined if
D,, = 0. The threshold ~; of the Detector and Plot-Extractor
is set lower than that used in the single-frame detector, causing
an increment both in the probability of detection (PD) and in
the false alarm rate (FAR), which is the average number of
false alarms per minute. The second stage correlates the plots
in the current plot-list with those in the past L — 1 plot-lists
and confirms or discard each plot in S,, through a secondary
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Figure 1. Detection architecture considered in [1].
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Figure 2. TBD Processor considered in [1].

threshold ~»: the goal is to restore FAR to its original level
while maintaining part (if not all) of the PD gain.!

The TBD processor considered in [1] (and originally pro-
posed in [13], [14]) consists of four blocks, as shown in
Fig. 2: the Track Formation stage, which correlates data from
multiple scans, the Track Pruning stage, which solves pos-
sible data association problems, the Plot Confirmation stage,
which compares the decision statistics with o, and the Track
Smoothing stage, which improves the measurement accuracy
of confirmed plots. This scheme shows some drawbacks in
the presence of multiple, closely-spaced targets, in that strong
targets may shadow weak ones. A way to cope with this
situation is to enlarge the search space to all the t-uples of
admissible trajectories, ¢ being the number of closely spaced
targets. This solution, however, is hardly implementable, for
it requires large computational resources and prior knowledge
of t.

In this work, we elaborate on the Track Formation and
the Track Pruning stages proposed in [1] and derive a novel
procedure, which successively estimates candidate target tra-
jectories and removes the corresponding measurements from
the input plot-lists, so that enlargement of the search space is
not required. The basic idea is inspired to the successive in-

IThis scheme is general enough to subsume both standard single-frame
detector (when ;3 = —oo and L = 1), and classical MFD with raw input
data (when y1 = —oo and L > 2).
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Figure 3. TBD Processor with successive track cancellation.

terference cancellation principle used in communications [15]
and adapted to radar systems in [3], [16], [17]. However, dif-
ferently from these works, at each estimation step, trajectories
are formed using a dynamic programming algorithm which
does not need a discretization of the measurement space, but
directly operates on the plot-lists, thus taking advantage of
the fact that the number of plots can be much smaller than
the number of resolution elements. The procedure is able to
improve the system performance in terms of PD and root
mean square error (RMSE) on the estimated target position
whenever closely-spaced targets are present in the monitored
area with limited complexity increment, while providing the
same performance of the procedure in [1] for widely spaced
targets.

In the next section, the track formation procedure with
successive track cancellation (STC) is described. Some experi-
mental results are discussed in Section III. Concluding remarks
are given in Section IV.

II. TRACK FORMATION WITH STC

Some estimated trajectories at the output of the Track
Formation stage in Fig. 2 may share a common root. This
may be deleterious, since target echoes may be responsible
for the confirmation of the alarms they caused and of the false
alarms in their proximity; moreover, the estimated trajectories
of weak targets may erroneously contain plots of strong,
close targets. The Track Pruning stage in Fig. 2 tries to
solve these data association problems a posteriori, i.e., after
all candidate target trajectories have been formed. Here we
merge the tasks of these two stages and derive a procedure
that solves any data association problems while trajectories
are formed. Specifically, an initial set of candidate target
trajectories is formed starting from the input plot-lists, the
dominant trajectories (i.e., those with largest metric among
all trajectories sharing the same root) are extracted, and the
corresponding plots are removed from the input data; the
process is iterated until there are no trajectories sharing a
common root. This procedure is implemented by Algorithm 1
and is referred to as Track Formation with STC; the resulting
TBD processor is shown in Fig. 3.

We now illustrate in detail the operations performed by
Algorithm 1. Without loss of generality, assume that the
current scan is n = L. If a target is present, its trajectory can
be uniquely specified by an L-dimensional index vector, say &,
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Algorithm 1 Track Formation with STC
Input: {S,}., Output: {7, 1, Fj. .} %
:i=1
cfori=1,...,Ldo
HY ={1,...,Ds}
end for 4 .
: {Tlil)LvFlEl)L}keH(L” = Track-Formation({Hél),Sg}lzl)
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AR AT keK ) ‘ 4
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. while KU £ H do
o1t =14+1
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122 end for ‘ .
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= Track-Extraction ({T,E”L, F,E”L I cH )
’ ’ L
) _ = (4) ,
15: A_AU{Tk7L}keKS)
16: end while
17: {Thr, Frp} ot = Track-Validation (A, {S¢}{_ ;)

~J

O 0

defined as follows:? if &, = k, with k € {1, ..., D}, the target
has been observed at scan /, and its plot is s, ¢, while if §, = 0,
the target has been missed at scan /. Following [1], the metric
associated with the trajectory indexed by £ is 25:1 2g0,00
where

sy d AR/ N, iR E{L. . D}
’ 7, ifk=0

so that it is related to the energy back-scattered by a prospec-
tive target, n being a parameter accounting for a missing
observation (which is set at the desin stage).

With these definitions, H." (lines 3 and 11 of Algorithm 1)
is the set containing the indexes of the plots available at
scan ¢ and iteration i to form prospective target trajectories.
Starting from the plots indexed by { H éz) }521, Function Track-
Formation (lines 5 and 13) implements a dynamic program-
ming algorithm to estimate the best trajectory ending in each
alarm at the current scan L and compute the corresponding
metric. Specifically, it returns

L L

) _
Ty, = arg max E Zeot
56712_’11 =1 EERL L ¢=1

forall ke H (i), where R,(;)L is the set containing the vectors
indexing all trajectories ending in sy 7, that can be formed

with the plots indexed by {H éi) }5:1- These trajectories must

2Here polar (or sensor) coordinates are used for track formation, and
velocities are not considered to limit complexity. Therefore, a trajectory is
a sequence of consecutive plots taken during L scans.



2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

Function 2 Track-Formation
i L
Input: {Héz),Sg}ézl Output: {'r]i’) F(L}k}EHS)

1: for k € Hl(i) do

2: Flsli_ k1/Nk1

3: ]Eg =k

4: end for

5. for { =2,...,L do

6: for k € H( 2 do

7: Mke—{jp pE{max{l,E—P—lL...,ﬁ—
1}, € HY, and (s;,, sx) satisfies the velocity
constraint}

8: if M,(:)e # & then

9: (h,m) = arg ) Fj(g

10: F) = F) 4 (0—m— 1)+ A3, /Ny

i ) = (=) 00k

12: else £—m—1

13: Fl) = (0= 1)+ A2 /Ny

14: =0 0k)

15: end if -1

16:  end for

17: end for

satisfy the constraints on the maximum target speed (which
is set at the design stage) and on the maximum number of
consecutive misses (i.e., of consecutive zeros in §), say P,
between two detections (needed to avoid large holes in the
trajectory). This is a modified version of Algorithm 1 in [1]
to account for the fact that at each iteration the set of input
plots indexed by {H Z(l)}le changes, and its implementation
is reported in Function 2. Function Track-Extraction (lines 6
and 14) selects, among all trajectories sharing the same root
(i.e., the first plot), the one with largest metric (i.e., the
dominant one). All dominant trajectories extracted at iteration
1 are included in the set A (lines 7 and 15) while the indexes of
their plots are stored in the sets {K } ;- The set containing
the indexes of the plots available at iteration ¢ is updated in
line 11. The while-loop ends when there are no estimated
trajectories sharing the same root. Finally, Function Track-
Validation (line 17) shrinks all estimated trajectories with less
than a specified minimum value, say @, of plots (trajectories
too short may be unreliable) maintaining only the last one
and updates their metric accordingly. Once the algorithm is
terminated, each plot s, 1, along with the associated trajectory
(indexed by 7 1) and test statistic F}, 1, is sent to the Plot
Confirmation stage in Fig. 3.

The complexity of Algorithm 1 is ruled by that of Func-
tion 2, whose complexity is linear in the number of integrated
scans and quadratic in the average number of alarms in the
input data-set [1]. Since the size of the input-data set pro-
gressively reduces at each iteration, the computational burden
required by Function 2 become negligible after few iterations.
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Figure 4. Probability of detection and root mean square error on the estimated
target position versus the distance among the closely-spaced targets when
FAR = 1 per min and FAR;, = 103 per min.

III. NUMERICAL RESULTS

We discuss a numerical example, where a Swerling I
fluctuation model is assumed. Each variable Ai,e /N is
exponentially distributed, and the constant 7) is set equal to
zero. Range and azimuth measurement errors are Gaussian,
with standard deviation 20 m and 0.5°, respectively. The scan
period is 1 s, and the search area is £60° and 40 to 140 km.
Four, widely-spaced triplets of targets are present, and their
positions and number are unknown to the detector. Targets
follow a constant velocity model, where the initial position of
each triplet is randomly chosen in 50 — 130 km and +50°,
and velocity has a random direction and modulus randomly
chosen in 0 — 300 m/s. The mutual distance among targets in
the same triplet is constant and equal to d. All targets have the
same SDR, which evolves with range according to the radar
equation, and the value at scan L is reported in all plots. The
Track Formation with STC operates with L = 10, vpax = 300
m/s, P =4, and Q = 3, while the the Track Smoothing stage
uses a standard linear regression. For the sake of comparison,
the performance of the scheme in Fig. 2 and that of the single-
frame detector (L = 1) are reported in all plots.

Fig. 4 shows PD and RMSE on the estimated target position
versus d,> when the SDR is 9 and 15 dB, FAR = 1 per
min, and FAR;, = 103 per min, the latter denoting the false
alarm rate in the input plot-list. It is seen that the proposed
scheme with STC guarantees a better accuracy in the estimated
position than that of the single-frame architecture, performing

30Observe that the position measurements of the three targets are different
with probability one due to measurements errors, even in the limiting case
d=0.
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Figure 5. Probability of detection and root mean square error on the estimated
target position versus FAR;, when d = 1 km and FAR = 1 per min.

similarly to the scheme in Fig. 2. As to PD, the detection
capability of the scheme in Fig. 2 may become even worse than
that of the single-frame detector in the presence of closely-
spaced targets. The proposed STC strategy is able to restore the
PD gain with respect to the single-frame detector when targets
are closely-spaced, making PD almost independent of d. Fig. 5
shows PD and RMSE on the estimated target position versus
FAR;, when FAR = 1 per min, while Fig. 6 shows the same
performance metrics versus FAR when FAR;, = 10? per min.
In both figures, d is 1 km and SDR is equal to 9 and 15 dB.
Again, the proposed scheme exhibits a detection performance
superior to that of the scheme in Fig. 2, the latter becoming
seriously impaired for large values of SDR and FAR;, (see
Fig. 5), or large SDR’s and low values of FAR (see Fig. 6).

IV. CONCLUSION

In this work we elaborated on the TBD processor in [1] and
proposed a novel track formation procedure with successive
track cancellation. The analysis indicates that the proposed so-
lution provides improved detection capabilities in the presence
of closely-spaced targets, while giving the same performance
as the scheme in [1] when targets are widely-spaced.
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