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Abstract—In the diffusion strategies for distributed estimation 

over adaptive networks, each node calculates a weighted average 

of the intermediate parameter estimates of its neighboring nodes. 

Thus, all the nodes should continuously share their intermediate 

estimates with their neighbors. In this paper, we consider 

exchanging a predetermined number of elements of each 

intermediate estimate vector at each iteration rather than the 

entire vectors. We examine two different schemes, i.e., stochastic 

and sequential partial-diffusion schemes, for selecting the to-be-

diffused elements at each iteration. Accordingly, we propose a 

partial-diffusion recursive least-squares (PDRLS) algorithm that 

can alleviate internode communications at the expense of 

estimation performance. Simulation results show that the 

communication-performance trade-off offered by the proposed 

algorithm is indeed lucrative. 

Keywords—adaptive networks; diffusion adaptation; distributed 

estimation; partial diffusion; recursive least-squares 

I. INTRODUCTION 

Various self-organized systems and distributed learning 
mechanisms can be effectively modeled using adaptive 
networks. An adaptive network is composed of a set of 
spatially-scattered nodes that are able to process data and learn. 
The nodes are interconnected and can cooperatively perform 
decentralized real-time data processing and optimization 
through exchanging information. The cooperation spreads the 
information throughout the network. As a result, the nodes can 
adapt to possible statistical changes in the data or 
topographical alterations in the network [1], [2]. 

Several strategies for distributed estimation over adaptive 
networks that rely on local interactions and in-network 
processing have been proposed. They include the incremental 
[3]-[5], consensus [6]-[8] and diffusion [9]-[11] strategies. In 
the incremental strategies, nodes only communicate with their 
neighbors, which are within a predefined cyclic path. The path 
should visit all the nodes in the network. Defining such a path, 
in particular for large networks, is not generally 
straightforward. The consensus strategies are constrained to 
converge to the same optimizer/estimate at each node. They 
are typically realized in two time steps. In diffusion strategies, 
nodes diffuse their data into the network by sharing them with 
their neighbors. The diffusion strategies are robust to link/node 
failures and have good adaptability and tracking abilities as 
well as flexibility for ad hoc deployment. It has been shown 
that the diffusion strategies outperform the consensus strategies 
in distributed estimation over adaptive networks [12]. 

The diffusion recursive least-squares (diffRLS) algorithm 
[9] is a decentralized version of the conventional recursive 
least-squares (RLS) algorithm [13] that implements diffusion-
based distributed estimation over adaptive networks. It 
adaptively seeks the distributed least-squares (LS) solution of 
the global estimation problem across the network and 
approaches the optimal LS solution without transmitting or 
inverting any matrix. 

In wireless ad hoc networks, electrical power resources of 
the nodes are often restricted. When the nodes perform a 
collaborative task over the network, the most power-
demanding action is usually the data transmission among the 
communicating nodes. The communications also take up 
bandwidth, which is a scarce commodity. Therefore, it is 
desirable to reduce the internode communications without 
compromising the benefits of cooperation significantly. Some 
attempts to achieve this goal by way of partial updating [14] or 
set-membership filtering [15] have been reported in [16]-[20]. 

In this paper, we propose a partial-diffusion recursive least-
squares (PDRLS) algorithm in which a predefined number of 
elements of each node’s intermediate estimate vector are 
diffused at each iteration. We devise two different schemes for 
choosing the to-be-diffused elements of each node at each 
iteration. Through computer simulations, we show that the 
proposed algorithm can mitigate internode communications at 
the cost of graceful performance degradation. 

II. ALGORITHM DESCRIPTION 

A. Diffusion recursive least-squares algorithm 

Let us consider a connected network with   nodes that aim 
to identify an unknown parameter vector,       , in a 
collective manner. Each node observes an input vector, 
         , and an output signal,       , that arise from a 

linear system described by 

         
       . 

Here,             is the node index and      is the time 
index. Superscript   denotes matrix/vector transposition and 
       represents the background noise. 

An estimate of   at node   and time instant   can be found 
adaptively in two phases that we explain below. 

1) The adaptation where the node computes an intermediate 
estimate,          , by minimizing its local 

exponentially-weighted least-squares cost function and 
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exploiting the input-output data available up to the present 
time: 
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‖ ‖  denotes the Euclidean norm, and       is a 
forgetting factor. 

2) The combination where the node transmits its 
intermediate estimate vector to its neighbors. Then, it 
creates a new estimate by averaging the intermediate 
estimates available within its neighborhood: 

      ∑         

    

 (1) 

where    denotes the closed neighborhood of node   and 

the coefficients {    } weigh the intermediate estimates of 

the neighbors based on their reliability or significance. 
They satisfy 

        if             and   ∑         
      . 

Defining 
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and using the recursive properties of 

         
               

          
  (2) 

and 

                                

together with applying the matrix inversion lemma [21] to (2), 
the following recursions for calculating      are obtained: 

         (       
                 

       

         
           

) (3) 

                     (         
       ). (4) 

Since        is a better estimate compared with       , it is 

beneficial to replace        with        in (4): 

                     (         
       ). (5) 

Hence, the local estimates are diffused outside of each node’s 
own neighborhood. We will refer to this algorithm, i.e., (3), (5) 
and (1), as the diffusion recursive least-squares (diffRLS) 
algorithm. 

It is noteworthy that, in the above algorithm, the 
intermediate estimates are updated using only the local (node-
specific) input-output data. However, in the algorithm of [9], 
each node shares its input-output data with its neighbors and 
uses the received data to update its intermediate estimate. This 
is carried out via a convex combination of the update terms 
induced by each input-output data pair. Here, in order to 
minimize the communication complexity, we only consider the 
abovementioned diffRLS algorithm and build our partial-
diffusion algorithm upon it. 

B. Partial-diffusion recursive least-squares algorithm 

By diffusing   out of   elements (entries) of the 
intermediate estimate vector of each node at each iteration, we 
can reduce the amount of communications that take place 
between the nodes and establish a trade-off between 
communication cost and estimation performance. The selection 
of the to-be-diffused elements at node   and time instant   can 
be represented as multiplication of the intermediate estimate 
vector,     , by a square selection matrix,          , that 

has   ones on its diagonal and zeros elsewhere. The positions 
of the ones determine the selected elements. Multiplication of 
     by      replaces its non-selected elements with zeros. 

The combination phase at each node needs all the elements 
of the intermediate estimate vectors of the node’s neighbors. 
However, when the intermediate estimates are partially 
diffused (      ), nodes have no access to the non-
diffused elements. To resolve this ambiguity, nodes can use the 
elements of their own intermediate estimate vectors in lieu of 
the ones of their neighbors that have not been transmitted. 
Accordingly, a partial-diffusion recursive least-squares 
(PDRLS) algorithm can be formulated by using (3) and (5) for 
adaptation and the following equation for combination: 

      ∑     [         (       )    ]

    

 (6) 

where         is the identity matrix. Note that (1) and (6) 
have the same computational complexity. Consequently, the 
PDRLS algorithm, i.e., (3), (5), and (6), requires the same 
number of arithmetic operations as the diffRLS algorithm. 

Another implication of partial diffusion is that the nodes 
need to know which elements of their neighbors’ intermediate 
estimate vectors are transmitted at each iteration. Therefore, 
address (position in the vector) of the diffused elements should 
also be transmitted. In the next subsection, we will describe 
two partial-diffusion schemes that bias the need for addressing. 

In order to quantify the savings offered by partial diffusion, 
we define the communication saving as 

    
       (

 
 

)

  
 

where   is the number of bits that represent each element of 
the intermediate estimate vectors and the second term of the 
numerator on the right-hand side stands for the addressing 
overhead. This quantity denotes the fraction of 
communications saved by the PDRLS algorithm at each 
iteration with respect to the diffRLS algorithm. In order to 
quantify the foreseeable performance degradation caused by 
partial diffusion, we also define the performance loss as 

  
     

     

 

where   ,    and    are the steady-state mean-square 
deviation (MSD) of the non-cooperative RLS, PDRLS, and 
diffRLS algorithms, respectively, in dB scale (see Section III.A 
ahead for the definition of the MSD). 

C. Element selection 

One way to select the elements of the intermediate estimates 
for diffusion is to pick them randomly. In this method, at each 
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Fig. 1. MSD curves of the non-cooperative RLS algorithm, the diffRLS 
algorithm, and the PDRLS algorithm with different numbers of elements 

diffused at each iteration using the stochastic partial-diffusion scheme. 

iteration,   out of   elements of the intermediate estimate of 
each node are randomly selected for diffusion. We call this 
scheme stochastic partial-diffusion. If the nodes utilize 
pseudorandom number generators (PRNGs) for the random 
selection process, they may share their PRNG seeds with their 
neighbors only once at the beginning of adaptation and 
consequently eliminate the addressing overhead. 

Another way is to select the   to-be-diffused elements 
sequentially and in a round-robin fashion over the iterations 
(time instants). In this sequential partial-diffusion scheme, the 
elements are equitably placed in   groups of size   such that 
each element is in   groups. Then, the groups are ordered in a 
predetermined sequence. At each iteration and in periods of   
iterations, only the elements of one group are diffused 
according to the order of the group in the sequence. The 
grouping and the sequence may be the same for all the nodes 
or alternatively different at each node. Since, in the sequential 
scheme, partial-diffusion scheduling is deterministic, the nodes 
can be informed in advance about the patterns according which 
their neighbors diffuse their elements. Consequently, the 
addressing overhead can be obviated with sequential partial-
diffusion when the nodes are duly synchronized. 

It is worth mentioning that the element selection processes 
of the abovementioned partial-diffusion schemes are analogous 
to the coefficient selection processes of the stochastic and 
sequential partial-update schemes [14]. 

III. NUMERICAL STUDIES 

A. Simulations 

We consider a problem of distributed system identification 
over an adaptive network. The unknown system has     
random parameters and unit energy. The network has a random 
topology with      nodes and average connectivity of four 

links per node. The input vectors at each node,     , are i.i.d. 

Gaussian with covariance matrix of                
  

where         is a random unitary matrix and the elements 
of         are randomly drawn from a uniform distribution 

in the interval [     ]. The additive noises at the nodes,     , 

are also zero-mean Gaussian. The input vectors and the noises 

 

Fig. 2. MSD curves of the non-cooperative RLS algorithm, the diffRLS 
algorithm, and the PDRLS algorithm with different numbers of elements 

diffused at each iteration using the sequential partial-diffusion scheme. 

of all the nodes are independent of each other in time and 
space. We use relative-degree weights [9] in the combination 
phase, initialize the estimates to all-zero vectors, and set 
       . 

In Figs. 1 and 2, we compare the performance of the non-
cooperative RLS algorithm, the diffRLS algorithm, and the 
PDRLS algorithm with different values of   for both 
stochastic and sequential partial-diffusion schemes by plotting 
the time evolution of their mean-square deviation (MSD). We 
define the MSD at time instant   by averaging over all the 
nodes as 
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and evaluate it by ensemble-averaging over     independent 
runs. In the sequential scheme, all the nodes use the same 
element selection pattern. 

In Figs. 3 and 4, we plot the communication saving,  , and 
the performance loss,  , as functions of the number of elements 
diffused at each iteration for both stochastic and sequential 
partial-diffusion schemes in the experiment of Figs. 1 and 2. 

B. Discussions 

The simulation results show that the partial diffusion 
enables us to trade estimation performance for communication 
cost. It is clear that the larger   is set, the closer to diffRLS the 
performance of PDRLS becomes. However, the performance 
degradation incurred by partial diffusion is rather graceful 
considering the substantial savings offered. For example, Figs. 
3 and 4 show that, in the simulated scenario, diffusing only a 
single element of each intermediate estimate vector per 
iteration using the sequential partial-diffusion scheme results in 
      reduction in the internode communications with 
reference to the full-diffusion case (the diffRLS algorithm) 
while sustaining only a performance loss of       with 
respect to the diffRLS algorithm and providing a performance 
gain of       with respect to the non-cooperative case (the 
RLS algorithm). 

Another observation is that the sequential partial-diffusion 
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Fig. 3. Communication saving versus the number of elements diffused at 
each iteration for both stochastic and sequential partial-diffusion schemes. 

scheme with the same element selection pattern in all the nodes 
outperforms the stochastic partial-diffusion scheme. 

IV. CONCLUSION 

We introduced the notion of partial diffusion in the context 
of distributed estimation over adaptive networks where, at each 
iteration, nodes transmit a subset of the elements of their 
intermediate estimate vectors to their neighbors. Consequently, 
the amount of required internode communications is reduced 
compared with the conventional case where all the elements of 
the intermediate estimate vectors are diffused. Reduced 
internode communications directly translates to significant 
savings in power consumption and bandwidth usage. We also 
considered two different schemes, namely, stochastic and 
sequential, to select the elements of the intermediate estimate 
vectors for diffusion at each iteration. Based on the introduced 
partial-diffusion strategy, we proposed a partial-diffusion 
recursive least-squares (PDRLS) algorithm. Predictably, partial 
diffusion incurs degradation in estimation performance. 
However, simulation results showed that the PDRLS algorithm 
provides a very efficient trade-off between communication cost 
and estimation performance. 
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