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Abstract—SIMO channel identification problems arise in many
practical applications, such as geolocation of HF sources propagated

via the multi-layer ionosphere. In this case, memory of the channel

(often modeled as a finite impulsive response (FIR) channel) makes the
traditional assumptions on the channel estimation training samples as

independent and identically distributed (i.i.d) invalid. This potentially

precludes the use of statistical characteristics typically derived under the

i.i.d. assumption, including the Expected Likelihood quality assessment
technique. In this paper, we introduce a likelihood-like criteria for this

circumstance and demonstrate the practical invariance properties of

its distribution for the Expected Likelihood condition, met when the
estimated parameters are statistically equivalent to the true ones.

I. INTRODUCTION

In problems with multi-mode propagation of signals to an
M -element antenna array, the M -variant “snapshot” vector
x(t) observed at the moment t may be presented as:

x(t) =
∑

τ∈Z

h(τ)s(t − τ) (1)

where {h(τ)}τ∈Z is the vector-valued impulse response,
h(τ) = [h1(τ), . . . , hM (τ)]T , s(t) is the transmitted source
waveform and Z is the domain of the channel impulse re-
sponse.

Let us assume that the transfer function h(z)

h(z) =
∑

τ∈Z

h(τ)e−zτ (2)

corresponds to the causal FIR system of degree L (i.e. h(L) 6=
0). Let the noisy output y of that system with snapshot x be

y(t) = x(t) +w(t) (3)

with spatially uncorrelated and temporally white additive noise
{w(t)}t∈Z of variance σ2 independent of {x(t)}t∈Z.

Then for a sequence of (N + 1) time observations at the
output of the M -element antenna array, with

xN (t) = [xT (t),xT (t− 1), . . . ,xT (t−N)]T

yN (t) = [yT (t),yT (t− 1), . . . ,yT (t−N)]T

wN (t) = [wT (t),wT (t− 1), . . . ,wT (t−N)]T
(4)

We can re-write the convolutive relationship (1) in the follow-
ing static form:

yN (t) = JNsN (t) +wN (t) (5)

using the signal s and the channel impulse response h

sN (t) = [s(t), s(t+ 1), . . . , s(t−N − L)]T

hL = [hT (0),hT (1), . . . ,hT (L)]T
(6)

and JN (ht) is the generalized Sylvester resultant matrix [1];

JN =









h(0) · · · h(L) 0 · · · 0
0 h(0) · · · h(L) · · · 0
...

. . . · · ·
. . .

...
0 0 · · · h(0) · · · h(L)









(7)

which is the block-Toeplitz matrix with (N+1) rows of (N+
L+ 1) M -variate vector blocks, so that the dimension of this
matrix is (N + 1)M × (N + L+ 1).

Assuming s(t) to be a stationary signal with

E{sN(t)sHN (t)} = RS (8)

and taking into account the white noise properties, we get

Ry = E{yn(t)y
H
n (t)} = J(hL)RSJ

H
N(hL)+σ2IM(N+1) (9)

The problem of SIMO channel “blind” identification is
that given a certain observation interval {t, . . . , t+ τO} at the
output of the M -element antenna array, one has to estimate the
Sylvester matrix (i.e. to estimate the (L+1)×M -variate vector

ĥL in (6)) or to estimate both ĥL and the actual transmitted
waveform ŝNO

.

For geolocation purposes, each of the (non-null) M -variate

vectors ĥ(j), j = 0, . . . , L should then be decomposed in a
number of (un-resolved in time) dominant plane-wave modes:

h(j) =

Kj
∑

k=1

ajks(θ̂jk) + ηj (10)

where ηj is a permissible diversion from the plane-wave
module, caused by “micro-multipath” ionospheric propagation
via very closely spaced paths and/or cause by additive noise

inflicted errors in vector ĥ(j) estimation.

One can see that in the general case, the problem solution

requires order L estimation, followed by vector ĥ(j) and ŝNO

estimation, and then the compressive sensing type DoA estima-
tion given in (10). At any stage in this estimation process, one
may get an intermediate result which needs to have its validity
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verified. Short of determining (in general computationally un-
achievable) global optimality in some statistical sense, one
needs a means of doing a “quality assessment” of the order
and vector estimates. To provide this, we wish to extend the
Expected Likelihood (EL) test used in DoA estimation [2] to
the problem at hand, as addressed in the next section.

II. EXPECTED LIKELIHOOD METHODOLOGY FOR FIR
SIMO IDENTIFICATION

Based on the above introduced model, the accurate statisti-
cal description, based on conditional (deterministic) maximum
likelihood, available for the M(NO + 1)-variate observation
vector is:

ωC [yNO
(t)] =

1

πM(NO+1)σ2M(NO+1)
exp{−

1

σ2
×

× (yn − JNO
(hl)SNO

)H(yn − JNO
(hl)SNO

)} (11)

For the case with MNO > L + NO + 1 and the white
noise power σ2 known a priori, one can transform the CML
case likelihood function (LF) given in (11) into the following
likelihood ratio (LR):

LFC(ĥL) =
[(M − 1)(NO − 1)− L̂]σ2

Tr {P⊥(ĥL)yNO
(t) yH

NO
(t)}

(12)

where

P⊥(ĥL) = IM(NO+1) − J(ĥL)[J
H(ĥL)J(ĥL)]

−1
J
H(ĥL)

(13)
while the signal can be estimated as

ŜNO
= [JH(ĥL)J(ĥL)]

−1
J
H(ĥL)yNO

(t) (14)

It can be demonstrated that for the clairvoyant solu-

tion ĥL = hL, the probability density function (p.d.f.) for
LFC(hL) does not depend on hL, though the order L of
the model does need to be known [2]. This forms the basis
of the Expected Likelihood technique, which uses quality
assessment metrics from this likelihood ratio distribution, as it
is independent of any particular scenario realization.

From (11)-(14), it follows that the entire set of (NO + 1)
M -variate observation vectors y(t), . . . ,y(t + NO) should
be treated as a single (NO + 1)-variate “snapshot” to be
properly statistically described. In general, any partition of
this single snapshot into a set of M(N + 1), N < NO-variate
training samples (the technique used in all existing SIMO blind
identification techniques [3, 4]) leaves these vectors correlated,
violating the i.i.d. assumption inherent in (12).

Of course, if we assume the source signal s(t) to be
temporally white, i.e. RS = σ2

SIN+L+1, and allow for longer
than m > L “time gaps” between the successive M(N + 1)-
variate training samples, we may enforce the independence
of these training samples, but the total number of such i.i.d
training samples is then only equal to NO/(N+L+1), which
is significantly less than the number of training samples, that
one obtains using the conventional “sliding window” averaging
(T = NO −N ) [5]:

R̂y =
1

T

N+T
∑

t=N+1

yN (t)yH
N (t) (15)

Specifically, this sample covariance matrix is used by many
existing methodologies (subspace-based [3], linear prediction
[4], and others) as the input statistics for identification. There-
fore validity of any estimated covariance matrix model

R̂y = JN (ĥL)R̂SJ
H
N (ĥL) + σ2IM(N+1) (16)

should be tested with respect to this covariance matrix. Of
course, when identification is completed, with hL (or in fact

(θ̂)jk, j = 0, . . . , L in (10) being identified, one can apply the
CML test in (12). Yet a number of important decisions have
to be performed prior to the final model being available.

Note that temporal correlation between “siding window”
training samples not only invalidates the formation of the
traditional likelihood function based on i.i.d. assumptions of

the training samples, but also means that the sample matrix R̂y

in (15) is not described by the complex Wishart distribution
CW(T,M(N + 1), Ry).

Regardless, the mean value of the sample matrix R̂y in
(15) is equal to the actual covariance matrix R:

E{R̂y} =
1

T

N+T
∑

t=N+1

E{yN (t)yH
N (t)} = Ry (17)

and therefore the covariance matrix model Ry(ĥL) may be
treated as appropriate if

E{R
− 1

2
y (ĥL)R̂yR

− 1
2

y (ĥL)} = IM(N+1) (18)

For this reason, we may still consider as a “quality met-
ric” likelihood ratios that have been derived under the i.i.d.
assumption, even if not strictly accurate. In particular, we may
use the sphericity test to check the hypothesis [6]:

H0 : E{R̂y} = cRy(ŷL) versus

H1 : E{R̂y} 6= cRy(ŷL) c > 0
(19)

when

LRsp(Ry(ĥL)|R̂y) =
det[R−1

y (ĥL)R̂y]
[

1
M(N−1)Tr [R−1

y (ĥL)R̂y]
]

1
M(N−1)

(20)
and look for the model Ry(ĥL) that maximizes this LRsp

value. For “Expected Likelihood” (EL) applications, this
criterion is suitable only if one can demonstrate for the

H0 hypothesis when Ry(ĥL) = Ry(hL) that the p.d.f. of

LRsp[Ry(hL|R̂y] does not depend on the unknown parame-
ters hL, and is therefore fully specified by a priori known
parameters such as M , N , and T . In this case, the p.d.f.
can be precalculated and metrics derived from that p.d.f.
can be used as “quality assessment” thresholds for the EL

methodology. There, a model Ry(ĥL is treated as appropriate

if the likelihood ratio LRy[Ry(ĥL)|R̂y ] generated by this
estimated covariance matrix model is above (or within) the
specified “quality assessment” thresholds.

Note that individually, each vector

ξ(t) = {R
− 1

2
y (hL)yN (t)} ∼ CN (0, IM(N+1)) (21)
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and therefore η ≡ LRsp[Ry(hL)|R̂y] may be presented as

η =
det{ 1

T

∑N+T

t=N+1 ξ(t)ξ
H(t)}

{

1
M(N−1)T

∑N+T
t=N+1 ξ(t)ξ

H(t)
}yM(N−1)

(22)

We end this section with our core conjecture for applica-
tion of Expected Likelihood to the FIR SIMO identification
problem:

Conjecture: A metric η using the p.d.f. of

LRsp[Ry(hL)|R̂y ] calculated for the noise-only
case (i.e. for hL = 0 or RS = 0) may be used as a p.d.f.
for η for an arbitrary Ry(hL) 6= IM(N+1) scenario with
sufficient for practical application accuracy.

Since we have not proven this conjecture, in the next section
we present simulation results which establish this conjecture
for several representative scenarios.

III. SIMULATION RESULTS

We consider a single-site location (SSL) direction-finding
case, where a M = 16-element uniform line array (ULA) ob-
serves an HF communications signal that propagates over three
resolved in time ionospheric propagation modes τ = 0, 1, 3
and therefore span L = 3 intervals with L + 1 = 4 overall
number of “taps” in a corresponding finite impulse response
(FIR) filter. The internal antenna noise is white with unit power
(σ2 = 1), while the source is simulated as an autoregressive
(AR(1)) process with

RS = σ2
S |ρ

|p−q||, p, q ∈ 0, . . . , N + T + 1. (23)

The ratio σ2
S/σ

2 denotes the SNR (per element) in our sim-
ulations. Following our methodology in (5)-(7), the Sylvester
M(N+1), N+1 matrix is formed using three non-zero vectors
h(0),h(1),h(3):

h(j) =

2
∑

i=1

αijs(θij , αij) ∼ CN (0, 1) (24)

and specific DoA values as introduced in Table I. Moreover,
each vector h(j) is scaled by a corresponding propagation
factor that account for different gains of the considered prop-
agation modes.

As follows from Table I, modes with different delays arrive
at quite different elevation angles, while specific delays in turn
consist of two poorly resolved in elevation plane waves. Yet
the main purpose of our simulations is to demonstrate validity
of the introduced Expected Likelihood principle, rather than
efficiency of any particular identification algorithm. Therefore
the sensitivity of our study to these angular parameters should
be essentially zero, and accuracy of their estimation is not
pursued further in this study.

For the fixed JN(hL), we conducted 106 independent
Monte-Carlo trials for T = 1000 and calculated sample p.d.f.s

for LRsp[Ry(hL)|R̂y] for different parameters of the problem.
First, in Fig. 1, we see demonstrated the LR distribution invari-
ance with scenario parameters suggested by our Conjecture.
In Fig. 2, the number of propagation modes were varied and
again, the LR distributions demonstrate scenario invariance.

TABLE I. SIMULATION PARAMETERS

Item Symbol Value

Array Size M 16

Time Samples T 1000

Tap Gain 1-4 σS(1 = 4 10, 5, 0, 2;

Signal Power σ2
S 1, 0.15, or 0.05

Noise Power σ2 1

Temporal Corr ρ 0, 0.5, 0.9 or 0.99

El Angle Pair 1 1 θ(1, 2) 10 and 12 †
El Angle El Angle 2 θ(3, 4) 30 and 31 †
El Angle El Angle 3 θ(5, 6) 60 and 61 †
El Angle El Angle 4 θ(7, 8) 70 and 70.5 †

†The 4 main sources resolve in time and angle - Unresolved sources have only a small

angle offset which does not resolve in elevation angle. This offset varies with elevation

angle because the elevation resolving power of the array improves toward zenith.
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Fig. 1. Sphericity test LR distribution for noise only and three source
scenarios (SNRs of -25dB, -16dB, and 0dB). Temporal correlation ρ was set
to 0.9. The LR p.d.fs show a “practical” scenario invariance property which
is a key requirement for the application of Expected Likelihood.
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Fig. 2. Sphericity test LR distribution for three source scenarios, all with
SNR of -16dB, but with propagation coefficients of [10; 2; 0; 5], [10; 0; 0;
10], and [10; 10; 0; 0]. This effectively gives scenarios with 3 modes, two
widely spaced (in delay) modes, and two closely spaced (in delay modes).
The LR p.d.fs continue to show a practical scenario invariance property.

In Fig. 3, we introduce the sample p.d.fs. calculated for
the base model (SNR = -16dB, tap gains = [10; 2, 0. 5])
and introduce different temporal correlations for our source
signal. One can see that temporal correlation of the source
signal also does not affect the properties of the “Expected
Likelihood” distribution ω(η) in (22) until introduction of very
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extreme temporal corrlations (ρ > 0.99) and even then, there
is only a minor offset which would still allow use of the EL
methodology, albeit with some minor false alarm elevation.
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Fig. 3. Sphericity test LR distribution for the same source scenario -16dB
and propagation coefficients of [10; 2; 0; 5]. The LR p.d.fs continue to show a
practical scenario invariance property, except under the most extreme temporal
correlations.

It is also important to note that the demonstrated invariance
of the ω(η) does not mean that the vectors ξ(t) in (22) may
be treated as independent. At Fig. 4, we once again introduce
sample p.d.f.s for “sliding window” produced noise samples
as in (22) and the traditional sphericity test p.d.f. for the same
number T = 1000 of i.i.d. noise-only training samples. It
is remarkable that the mean value for both p.d.f.s remains
the same, while the greater number of i.i.d. samples in the
traditional case leads to a considerably smaller second order
central moment.
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Fig. 4. Sphericity test LR distribution for a noise only source scenario
utilizing a sliding window and no sliding window for the sample data
generation. The means of the distributions correspond, but the second moments
do not.

It is also important that if one tries to enforce the inde-
pendence of training samples by appropriate “sparsing” of
training data, the efficiency of the EL quality assessment
will be significantly degraded. Simulation employing a noise-
only scenario with the traditional i.i.d. sample environment
with 145 training samples rather than the sliding window

with 1000 training samples was used to generate sample LR
p.d.f.s. Obviously, for M(N + 1) = 112, this relatively small
sample support leads to significantly smaller likelihood ratio
values (specifically in this case, values ranging between 0.545
to 0.57). Practically, it means that sliding window produced
training data collectively contain much more information about
the underlying scenario than the properly sub-sampled strictly
i.i.d. subset, and therefore these sliding samples should not be
discarded neither for identification nor for quality assessment
purposes.

IV. CONCLUSION

We have suggested for the FIR SIMO identification prob-
lem that likelihood ratio tests (a sphericity test in particular) de-
rived for i.i.d. training samples (even though that condition that
does not apply for the FIR SIMO scenario) can still be used
in lieu of a fully accurate likelihood function accounting for
the correlation of the training samples. It has been conjectured
and demonstrated by simulation that the p.d.f. of the sphericity
test for the true space-time covariance matrix can be accurately
represented by the p.d.f. of the LR for spatially white noise-
only samples, derived by a “sliding window” technique from
a single white noise sequence. While accurate analytical ex-
pressions for this p.d.f are not derived, independence of this
“Expected Likelihood” p.d.f on parameters other than a priori
known ones enable use of the EL methodology.

Specifically, an estimated space-time covariance matrix
model is treated as acceptable, if sphericity test values gener-
ated by this model is within the support of this EL distribution.
In this way, the derived soution is statistically at the same
likelihood “distance” from the sample matrix as the unknown
true solution, which means that further model refinement is
not statistically necessary, and the model is “as likely as the
truth”.

Future activity can be focused on proving the conjec-
tured statistical properties and analysis of EL efficiency for
identification solution quality assessment and determination of
estimate breakdown in threshold conditions.
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