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Abstract—In this paper, a novel method of robust source
localization using MUSIC-Group delay (MUSIC-GD) spectrum
computed over spherical harmonic components is described.
Our earlier work on the MUSIC-GD spectrum has focused on
uniform linear array (ULA) and uniform circular array (UCA)
for resolving closely spaced speech sources using minimal number
of sensors under reverberant environments. However, this work
tries to utilize the advantages of the MUSIC-GD spectrum in a
spherical harmonics framework that is computationally simple
and more accurate. The MUSIC-GD spectrum for spherical
harmonic components is first defined. Its advantages in high
resolution DOA estimation are also discussed. Several experi-
ments are conducted for 3-D source localization in reverberant
environments and the performance of the MUSIC-GD is com-
pared to other conventional methods. Additional experiments on
source tracking are also conducted. The results obtained from
the MUSIC-GD computed over spherical arrays are motivating
enough to further investigate the method for multiple source
tracking in reverberant environments.

I. INTRODUCTION

Spherical microphone arrays have been a very active area
of research in recent years [1], [2]. This is primarily because of
the relative ease with which array processing can be performed
in the spherical harmonics (SH) domain without any spatial
ambiguity [3]. Due to the similarity in the formulation of
various problems in spatial domain and spherical harmonics
domain, the results of the spatial domain can directly be
applied in the spherical harmonics domain.

One of the primary application of microphone array pro-
cessing is the direction of arrival (DOA) estimation of the
sources. Various DOA estimation methods have been proposed
like beamforming based, maximum likelihood (ML) based [4]
and subspace-based. The high resolution of subspace-based
methods is due to subspace decomposition. MUltiple SIgnal
Classification (MUSIC) [5] is the most popular subspace-based
method due to its simplicity and high spatial resolution. The
SH-MUSIC [6] utilizes spherical harmonics in conventional
MUSIC for DOA estimation. However, for closely spaced
sources it gives many spurious peaks, making DOA estima-
tion challenging. Conventionally, DOA estimation utilizes the
spectral magnitude of MUSIC to compute the DOA of multiple
sources incident on an array of sensors. The phase information
of the MUSIC spectrum has been studied in [7] for DOA
estimation over a uniform linear array (ULA). In this work,

we define and discuss the use of the negative differential of the
unwrapped phase spectrum (group delay) of MUSIC for DOA
estimation over spherical array of microphones. The primary
contribution of this work is the utilization of the MUSIC-
Group delay (MUSIC-GD) spectrum in spherical harmonics
domain to localize closely spaced sources over spherical arrays
under reverberant environments.

The rest of the paper is organized as follows. Section II
presents the proposed MUSIC-GD spectrum over spherical
array of microphones. The method is presented after brief
discussion on spherical harmonics domain. The proposed
method is evaluated in Section III. Section IV concludes the
paper.

II. MUSIC-GROUP DELAY SPECTRUM FOR SOURCE

LOCALIZATION OVER SPHERICAL ARRAY

Subspace-based method utilizing magnitude spectrum of
MUSIC called MUSIC-Magnitude (MM) spectrum, gives large
number of spurious peaks for closely spaced sources. Hence
it requires comprehensive search algorithm for deciding the
candidate peaks. The MM method is more prone to error
under reverberant conditions. In [8], a high resolution source
localization based on the MUSIC-GD spectrum over ULA has
been proposed. The method is non-trivially extended for planar
arrays in [9], [10]. In this work, a robust source localization
method using MUSIC-GD spectrum is proposed in spherical
harmonics domain. In the following Section, the spherical
harmonics model for MUSIC-GD analysis is outlined.

A. The spherical harmonics model for MUSIC-GD analysis

We consider a spherical microphone array of order N with
radius r and number of sensors I . A sound field of L plane-
waves is incident on the array with wavenumber k. The lth

source location is denoted by Ψl = (θl, φl). The elevation
angle θ is measured down from positive z axis, while the
azimuthal angle φ is measured counterclockwise from positive
x axis.

In spatial domain, the sound pressure at I microphones,
p(k) = [p1(k), p2(k), . . . , pI(k)]

T , is written as,

p(k) = V(k)s(k) + n(k), (1)

where V(k) is I × L steering matrix, s(k) is L × 1 vector
of signal amplitudes, n(k) is I × 1 vector of zero mean,
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uncorrelated sensor noise and (.)T denotes the transpose. The
steering matrix V(k) is expressed as

V(k) = [v1(k),v2(k), . . . ,vL(k)], where (2)

vl(k) = [e−jkT

l
r1 , e−jkT

l
r2 , . . . , e−jkT

l
rI ]T (3)

kl = −(k sin θl cosφl, k sin θl sinφl, k cos θl)
T (4)

ri = (r sin θi cosφi, r sin θi sinφi, r cos θi)
T (5)

Writing Equation 1 in spherical harmonics domain [11],

pnm(k, r) = B(kr)YH(Ψ)s(k) + nnm(k) (6)

where pnm(k, r) is the vector of spherical Fourier co-
efficients, B(kr) and Y(Ψ) are defined in Equation 11 and
Equation 13 respectively. The spherical Fourier co-efficients
are given by pnm(k, r) = [p00, p1(−1), p10, p11, . . . , pNN ]T .
Each pnm is Spherical Fourier Transform (SFT) of received
pressure on the surface of sphere, p(k, r, θ, φ). The SFT is
defined as [12]

pnm(k, r) =

∫ 2π

0

∫ π

0

p(k, r, θ, φ)[Y m
n (θ, φ)]∗ sin(θ)dθdφ,

(7)
The spherical harmonic of order n and degree m, Y m

n is
defined in Equation 14.

The pressure on the sphere is spatially sampled by the
microphones. Hence, the Equation 7 can be re-written as

pnm(k, r) ∼=

I
∑

i=1

aip(k, r,Φi)[Ynm(Φi)]
∗ (8)

∀n ≤ N,−n ≤ m ≤ n

where ai are the sampling weights [13], Φi = (θi, φi) is
the microphone angular position and (.)∗ denotes complex
conjugate. The inverse SFT is defined as

p(k, r, θ, φ) =

∞
∑

n=0

n
∑

m=−n

pnm(k, r)Y m
n (θ, φ), (9)

For order limited pressure function, Equation (9) can be
written as

p(k, r,Φ) ∼=

N
∑

n=0

n
∑

m=−n

pnm(k, r)Y m
n (Φ). (10)

The (N + 1)2 × (N + 1)2 matrix B(kr) is given by

B(kr) = diag(b0(kr), b1(kr), b1(kr), b1(kr), . . . , bN (kr))
(11)

where bn(kr) is called mode strength and for open sphere, it
is given by

bn(kr) = 4πjnjn(kr) (12)

where jn(kr) is spherical Bessel function and j is the unit
imaginary number. Figure 1 illustrates mode strength bn as
a function of kr and n for an open sphere. For kr=0.2,
zeroth order mode amplitude is 0 dB, while the first order
has amplitude -26.45 dB. Hence for order greater than kr,
the mode strength bn decreases significantly. For the order
N ≥ kr, the Equation 9 can be truncated at N . This justifies
the finite order Equation 10.
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Fig. 1. Mode amplitude bn plot for open sphere as a function of kr and n

Y(Ψ) is L × (N + 1)2 steering matrix. A particular lth

steering vector is written as

yl = [Y 0
0 (Ψl), Y

−1
1 (Ψl), Y

0
1 (Ψl), Y

1
1 (Ψl), . . . , Y

N
N (Ψl)]

(13)
The spherical harmonic of order n and degree m, Y m

n (Ψ) is
given by

Y m
n (Ψ) =

√

(2n+ 1)(n−m)!

4π(n+m)!
Pm
n (cosθ)ejmφ (14)

with Ψ = (θ, φ) is direction of arrival of the plane wave.
Y m
n are solution to the Helmholtz equation [14] and Pm

n

are associated Legendre function. For negative m, Y m
n (Ψ) =

(−1)|m|Y
|m|∗
n (Ψ). Figure 2 shows three spherical harmonics

plot. The radius shows the magnitude and color shows the
phase. It is to be noted that Y 0

0 is isotropic while Y 0
1 and Y 1

1
have directional characteristics.

Fig. 2. Spherical harmonics plot, Y 0
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Multiplying both side of Equation 6 by B−1(kr), we get
the final spherical harmonics model as follows

anm(k) = YH(Ψ)s(k) + znm(k), (15)

where
znm(k) = B−1(kr)nnm(k). (16)

B. The MUSIC-Group delay spectrum computed for spherical
harmonics components

The MUSIC-Magnitude spectrum for spherical array of
microphones is given by

PMUSIC(Ψ) =
1

y(Ψ)SNS
anm

[SNS
anm

]HyH(Ψ)
(17)

where y(Ψ) is a steering vector defined in Equation 13 and
SNS
anm

is noise subspace obtained from eigenvalue decomposi-

tion of autocorrelation matrix, Sanm
= E[anm(k)anm(k)H ].
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The denominator takes zero when Ψ corresponds to DOA
owing to orthogonality between noise eigenvector and steering
vector. Hence, we get a peak in MUSIC-Magnitude spec-
trum. However, when sources are closely spaced, MUSIC-
Magnitude spectrum is unable to resolve them accurately
giving many spurious peaks. Figure 3 illustrates the MUSIC-
Magnitude spectrum for an Eigenmike system [15]. The
simulation was done considering open sphere for the sources
at (20◦,50◦) and (15◦,60◦) with SNR = 10 dB. Frequency
smoothing and whitening of noise was applied as in [11]. The
MUSIC-Magnitude spectrum gives many spurious peaks for
closely spaced sources and hence determining the candidate
peak becomes challenging.
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Fig. 3. MUSIC-magnitude spectrum for sources at (20◦,50◦) and (15◦,60◦),
SNR=10 dB

Hence, we propose the use of group delay spectrum for
resolving closely spaced sources. There is sharp change in
phase spectrum of MUSIC at DOA as illustrated in [8]. Hence
the differential magnitude of phase, called group delay, results
in a peak at DOA. In practice abrupt changes can occur in
the phase due to small variations in the signal caused by
microphone calibration errors. This leads to many spurious
peaks in group delay spectrum [10]. The proposed MUSIC-
Group delay spectrum for spherical array of microphones is
given by

PMGD(Ψ) = (

U
∑

u=1

|∇arg(y(Ψ).qu)|
2).PMUSIC(Ψ) (18)

where U = (N + 1)2 − L, ∇ is the gradient operator,
arg(.) indicates unwrapped phase, and qu represents the
uth eigenvector of the noise subspace, SNS

anm

. The MUSIC-
GD spectrum is product of MUSIC-Magnitude and group
delay spectra. Hence the spurious peaks in MUSIC-Magnitude
and group delay spectrum are removed and prominent peaks
corresponding to DOAs are retained as illustrated in Figure 4.
In addition, the phase spectrum follows additive property, that
enables the group delay spectrum to better preserve the peak
than magnitude spectrum following multiplicative property [9].

III. PERFORMANCE EVALUATION

Experiments on source localization and source tracking
[16] are performed to evaluate the proposed method. The
experiments on source localization are presented as root mean
square error (RMSE) at various reverberation time T60 [17].
The proposed method is compared with MUSIC-Magnitude
and minimum variance distortionless response (MVDR) [18].
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Fig. 4. MUSIC-Group delay spectrum for sources at (20◦,50◦) and
(15◦,60◦), SNR=10 dB

Narrowband source tracking results are presented as two di-
mensional trajectory of the elevation angle for a fixed azimuth.

A. Experimental Conditions

The proposed algorithm was tested in a room with dimen-
sions, 7.3m× 6.2m× 3.4m. An Eigenmike microphone array
[15] was used for the simulation. It consists of 32 microphones
embedded in a rigid sphere of radius 4.2 cm. The order of
the array was taken to be N = 3. The source localization
experiments are done at various reverberation times (T60). The
room impulse response for spherical microphone array was
generated as in [19].

B. Experiments on source localization

To evaluate the resolving power of the proposed method,
two sources at Ψ1 = (30◦, 60◦) and Ψ2 = (35◦, 50◦)
were considered. Localization experiments were conducted
for 300 iterations at three different reverberation times, 150
ms, 200 ms and 250 ms. The experiment was repeated for
three methods, MUSIC-GD, MUSIC-Magnitude and MVDR.
The results are presented as RMSE values in Table I for
source 1. MUSIC-GD has reasonably lower RMSE than other
conventional methods proving it to be more robust.

TABLE I. COMPARISON OF RMSE OF VARIOUS METHODS AT

DIFFERENT REVERBERATION TIME, T60 .

Angle Method
T60

(150ms)

T60

(200ms)

T60

(250ms)

θ

MUSIC-GD 0.6403 0.6419 0.6475

MM 0.6688 0.8144 0.7989

MVDR 1.1034 1.1579 1.1738

φ

MUSIC-GD 1.4387 1.4665 1.4866

MM 1.7866 1.9127 1.6484

MVDR 2.276 2.3481 2.4927

C. Experiments on narrowband source Tracking

To demonstrate the effectiveness of MUSIC-GD over
MUSIC-Magnitude, elevation angle of a moving source is
tracked in this section. The source continuously emits nar-
rowband signal impinging on the array of microphone. The
azimuthal angle (φ) of the source is fixed at 45◦ and the
elevation angle is varied as the trajectory given in Figure 5.
The elevation angle is tracked at fixed azimuth with MUSIC-
GD and MUSIC-magnitude. Figure 6(a) illustrates the tracked
trajectory by MM spectrum. It can be noted that the trajectory
is zig-zag because of spurious peaks that arises in MM
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Fig. 5. Trajectory of elevation angle (θ) followed by the moving source with
time for a fixed azimuth φ = 45

◦.
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Fig. 6. Tracking result for elevation (a)MUSIC-Magnitude and (b) MUSIC-
Group delay. The azimuth is fixed at 45◦.

spectrum. MUSIC-GD tracking result is shown in Figure 6(b).
This is very close to the actual trajectory leading to efficient
tracking.

IV. CONCLUSION

In this paper, a high resolution source localization method
for spherical array has been proposed using MUSIC-GD
spectrum. Experimental results on multi-source localization
show the robustness of the method. Experiments on tracking a
single source are motivating enough to extend this approach to
track multiple sources that are closely spaced in a kalman filter
framework. The proof of additive property of group delay in
the spherical harmonics domain is non trivial and is currently
being developed. The question of utilizing the diffraction and

scattering information provided by the spherical harmonics in
the MUSIC-GD framework for reverberant environments is
also being investigated.
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