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Abstract—An$ adaptive$ approach$ to$ enhancing$ images$

obtained$from$an$array$of$ultrasonic$transducer$elements$is$
proposed$and$evaluated.$The$basic$algorithm$is$driven$by$a$
system$ of$ partial$ differential$ equations$ that$ 1)$ reduce$
speckle$ by$ way$ of$ the$ instantaneous$ (local)$ coefficient$ of$
variation$and$2)$force$congruence$with$an$anatomical$model$
using$a$wellAknown$perceptual$quality$metric.$A$differential$
form$ of$ the$ quality$ metric,$ the$ structural$ similarity$ image$
measure$ (SSIM),$ is$ derived$ and$ applied.$ This$ update$
mechanism$ registers$ the$ image$ data$ to$ the$ model,$ thus$
solving$ segmentation$ simultaneously$ with$ enhancement.$
The$ algorithm,$ called$ SSIM$ diffusion,$ is$ tested$ on$ a$ needle$
placement$ application$ in$ phlebotomy$ in$ which$ delineation$
of$a$vessel$boundary$is$required.$A$group$of$images$obtained$
from$a$portable$CAscan$ultrasonic$sensor$is$used$to$evaluate$
the$enhancement$and$segmentation$algorithm.$Comparisons$
to$ a$ standard$ speckle$ reducing$ diffusion$ algorithm$ show$
that$ the$modelAbased$SSIM$diffusion$superior$enhancement$
with$ a$ 67%$ increase$ in$measurable$ image$ quality$ over$ the$
original.$

I. INTRODUCTION 
Ultrasound imaging uses beamforming to form an image 

from an array of transducer elements [10]. This type of 
imaging has salient value to the medical imaging community 
given that it is non-radiating, inexpensive and provides high 
temporal resolution. One application of ultrasonic imaging, 
explored in this paper, is phlebotomy [2]. Phlebotomy is the 
practice of making an incision in a vein. Ultrasound can be 
used to guide such a needle placement. In fact, portable 
ultrasound units have emerged recently, extending the use of 
such imaging outside the hospital.  

One drawback of ultrasound is the difficulty of 
segmentation due to the presence of speckle. We apply an 
adaptive technique based on computing an instantaneous 
coefficient of variation (ICOV) (as opposed to standard 
gradient operators) for the reduction of speckle [6][11][12]. 
This speckle reducing partial differential operator is combined 
in a novel way with an operator that attempts to fit an 
anatomical model to the image data.  

In a venipuncture process, the basic anatomy of vasculature 
is known a priori, which suggests model-based image analysis 
is appropriate. With a model-based approach to enhancement, 
segmentation or registration, we need a numerical measure of 

congruence with the model. In the last decade, the signal 
processing community has emerged from the fog of mean-
squared error and has seen the attractive properties of 
perceptual image quality measures [3][4][5][7][9]. Despite 
their numerical convenience, traditional measures such as 
mean squared error or similar manifestations of signal-to-
noise ratio do not agree with human perception.  

Here, we explore the evaluation of agreement with a model 
by way of a perceptual image quality metric. Perhaps no other 
measure has received as much attention as Wang, Bovik, 
Sheikh and Simoncelli’s structural similarity image measure 
(SSIM) [8]. In SSIM, three main terms are combined to 
measure agreement with a reference image: a luminance term, 
a contrast term and a structure term. This paper uses 
differential versions of these three terms to maximize image 
quality with respect to a model. 

The overall strategy presented here is to combine speckle 
reducing anisotropic diffusion (a method tailored to 
ultrasound imaging) with a model-driven term based on SSIM. 
Section II reviews the necessary fundamentals in speckle 
reduction, while Section III introduces the SSIM diffusion that 
promotes agreement with an anatomical model. Results are 
given in Section IV with a conclusion in the following section. 

II. SPECKLE REDUCTION 
 In our ultrasound image acquisition process, we acquire 
the radio frequency (RF) signal directly. Then, the RF data are 
modulated to baseband (a lowpass signal that is viewable). 
The intensity signal, I, is the square of the baseband signal. 
 To implement speckle reducing anisotropic diffusion 
(SRAD) on ultrasound image intensity, the following partial 
differential equation (PDE) is applied: 

!"(!,!)
!" = !"# !(!(!, !))∇!(!, !) , (1) 

where t represents diffusion time, and q(i, j) is the ICOV at 
position (i, j) and is given by (see [11], [12] for derivation): 

!(!, !) =
!
! ∇!(!,!) !!

!
!" ∇!!(!,!) !

!(!,!)!!! ∇!!(!,!)
! . (2) 

The function !(!(!, !)) in (1) is a diffusion coefficient that 
approaches unity in homogeneous regions and approaches 
zero at boundaries. This diffusion coefficient can be computed 
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by way of 
!(!(!, !)) = !

!!!
!(!,!)!!!!
!!!(!!!!!)

  (3) 

where q0 is the estimate of the coefficient of variation in a 
homogeneous region. Of course, as discussed in [1] and [12], 
(1)-(3) can be implemented on a discrete grid by way of 
typical discretization techniques. 
 

III. SSIM DIFFUSION 

A. SSIM Model 
In this problem, we assume the existence of a model M, 

which can be considered an atlas of the anatomy. Such a 
model matches the actual imaged data in structure and in 
mean intensity over homogeneous regions. The model M, 
however, is not necessarily registered in space to the sensed 
image I. In fact, the model has a coordinate system in 2-D of i’ 
= (i’, j’) that is related to the image coordinate system i = (i, j) 
by i’ = f(i). Without loss of generality, we can assume an 
affine model of 

 i’ = Ai + B.  (4) 
Our hypothesis is that the similarity measure used to 

compare I and M should be structurally based, as opposed to 
mean squared error (MSE). Wang et al. [8] show that at 
constant levels of MSE there are widely varying levels of 
perceptual quality. Since we want our atlas model to model 
the image data structurally, we choose SSIM as the similarity 
measure. 

Their similarity measure is expressed [8]: 
SSIM(!, !) = !(!, !) ! !(!, !) ! !(!, !) ! (5) 

where !(!, !)!is the luminance term, 

!(!, !) = 2!!!! + !!
!!! + !!! + !!

 

and  !(!, !) is the contrast term,  

!(!, !) = 2!!!! + !!
!!! + !!! + !!

 

and, finally, !(!, !) is the structure term, 

!(!, !) = !!" + !!
!! !! + !!

. 
In the above, the µ terms are local means, the σ terms are 
local standard deviations and !!"  represents the local 
correlation coefficient (between model and image). The 
constants C1, C2, C3 are defined in [8], and we set ! = ! =
! = 1 as in the Wang et al. paper [8]. 
 

B. Diffusion term for SSIM-based Model Adherence 
To implement model adherence via a PDE, we need a 

differential term that represents the change in SSIM(!, !) 
based on a change in a single pixel I(i, j). Thus, we need 
!!!"#(!,!)!
!"(!,!) . In such a computation, we treat all other pixel 

intensities (aside from I(i, j)) in I and M as constants. 
So, we can represent SSIM(!, !) as: 
 

4!!!!!!" + 2!!!!!! + 2!!!!" + !!!!
!!2 !!2 + !!2!!2 + !!2!!2+!2!!2 + !1!!

2 + !!2 !!2 + !2!!2 + !1!!
2 + !1!2

 

 
and then take a partial derivative with respect to I(i, j). If the 
expression for the SSIM(!, !) is represented by the constituent 
numerator and denominator, i.e., SSIM(!, !) = !"#(SSIM)/
!"#$%(SSIM) then we need to compute: 

!SSIM(!, !)!
!"(!, !) = 

!"#$%(SSIM)!"#′(SSIM) − !"#(SSIM)!"#$%′(SSIM)
!"#$%(SSIM) !  

      (6) 
Hence, that leaves the derivation of !"#′(SSIM)  and 
!"#$%′(SSIM) , which involves numerous terms but is 
tractable. 

In contrast to the approach suggested by (6), taking the 
partial derivative of the SSIM expression as a whole, we take 
an alternate approach. By differentiating the !(!, !), !(!, !), 
and !(!, !)  terms separately, we can control the rate of 
diffusion for luminance, contrast and structure individually. 
We can then combine the terms as a derivative of products or 
simply use a sum of weighted partial derivative terms. 

For the three individual terms, we have: 
!"(!, !)
!"(!, !) =

!
!(!!! + !!! + !!)!! − !

!!! (2!!!! + !!)
!!! + !!! + !! !  

 
!"(!, !)
!"(!, !)

=
2!!!! (!!

2 + !!2 + !2)(
2

5
!(!, !) − 1

10
!) − (2!!!! + !2)(

2

5
!(!, !) − 1

10
!)

!!2 + !!2 + !2 2  

 
!"(!, !)
!"(!, !)

=
!′!"(!! !! + !!) − !!!! (!!" + !!)(

2
5 !(!, !) −

1
10 !)

!! !! + !!
!  

where ! = !(! − 1, !) + !(!, ! − 1) + !(! + 1, !) + !(!, ! + 1), 
and !′!" = !!!"!

!"(!,!).  
Combining the SSIM-related terms with the speckle 

reducing diffusion in (1), we have 
!"(!, !)
!" = !"# !(!(!, !))∇!(!, !)

+ ! !"(!, !)
!"(!, !) +

!"(!, !)
!"(!, !) +

!"(!, !)
!"(!, !) !(7) 

where !  is a weight that equalizes the maximum rate of 
change due to diffusion and due to the SSIM-based model 
adherence. Because it is a combination of SSIM and diffusion, 
we call the new approach SSIM diffusion. 

C. Registration of model to image data 
Given that the image data and the model are related by an 

affine transformation in domain, we can simultaneously adjust 
the registration parameters while enhancing the image. 
Although the main purpose of this work is to explore the use 
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of a structural quality measure in enhancing ultrasound images 
as combined with speckle reduction, this framework opens the 
door for the exploration of an automated registration 
technique. Here, we assume that 1) the model and the image 
are related by translation, 2) the initialization is close enough 
that the effects of local optima can be ignored. We perform 
gradient ascent on the SSIM surface by making changes to the 
translation B in (4). 

 

IV. RESULTS 
To examine the efficacy of SSIM diffusion, we used a set 

of 20 C-scan images (from a portable, battery powered 
scanner) of a cylindrical phantom that mimics a vessel. The 
accompanying models in the SSIM approach were simply 
cylinders of the same diameter as imaged. Two sample images 
are shown in Fig. 1(a) and 2(a). First, results using just SRAD 
[12] were generated and then compared to results using SSIM 
diffusion. Given a similar PDE structure (between (1) and (7)), 
it was straightforward to use matching parameters in terms of 
diffusion iterations, rate of diffusion and identical numerical 
schemes. A sample result from SRAD is shown in Fig. 1(b), 
with a sample result from SSIM diffusion in Fig. 1(c). We 
realize that many other relevant comparisons are possible.  For 
more extensive comparisons to SRAD, see [11] and [12]. 

Fig. 2 provides a graph of the results on the 20 images in 
terms of SSIM (taken with respect to the cylindrical model). 
The blue bars represent the SSIM values of the original image 
as acquired, the green bars represent enhancement by SRAD 
and the red bars enhancement by SSIM diffusion (the method 
introduced here). The average SSIM for the original images is 
0.55. The average SSIM for SRAD-enhanced results is 0.77, 
giving an improvement of 0.22 over the original images. For 
SSIM diffusion, the average SSIM produced is 0.92, which is 
0.37 over the original images. 

The performance of SSIM diffusion as given in (7) depends 
upon two main parameters. First, the selection of the number 
of updates (the diffusion sweeps) affects the result. As shown 
in Fig. 3, the algorithm needs about 30 diffusion sweeps to 
achieve sufficient smoothing and model adherence. After 40 
iterations, the result levels off in quality but suffers from some 
over-smoothing. 

 

 
   (a) 

 
   (b) 

 
   (c) 

Fig. 1. Example results from the 20 experiments. (a) The original 
image. (b) Enhancement by SRAD. (c) Enhancement by SSIM 

diffusion. 
 
 

 
Fig. 2. SSIM values for the original images (blue), the SRAD-

processed images (green) and the SSIM diffusion-processed images 
(red). SSIM diffusion is the SSIM-based anisotropic diffusion 

introduced in this paper. 
 
 

 
Fig. 3. Sensitivity of SSIM quality to number of diffusion sweeps 

(iteration) for SSIM diffusion. 
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The second important parameter selection is the weight λ in 
(7). λ represents the strength of model adherence in relation to 
the speckle reducing (smoothing) term. For our experiments, 
performance is fairly robust with respect to choice of λ. 
However, small λ values (<<100) result in no model 
adherence, and large λ values (>>220) result in reduced 
smoothing. See Fig. 4. 

 

 
Fig. 4. Sensitivity of SSIM quality to weight λ (see (7)) for SSIM 

diffusion. 
 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 5.  (a) Human vein as imaged.  Enhanced images using: (b) 
SRAD and (c) SSIM diffusion. 

 

To show efficacy for ultrasound data on an actual vessel, we 
performed both SRAD and SSIM diffusion on a C-scan image 
of a human medial cubital vein shown in Fig. 4(a). The SRAD 
and SSIM diffusion results are shown in Fig. 4(b) and 4(c), 
respectively. One may observe that segmentation appears 
straightforward using the SSIM diffusion result. 

V. CONCLUSION 
This paper reports the combination of speckle reduction 

and model adherence for scenarios in which anatomy is 
roughly known and an atlas can be employed. Both speckle 
reduction and model adherence in this approach are 
implemented via PDEs. In the application of the model, the 
perceptually significant SSIM measure is used, which 
emphasizes structure. The results demonstrate that the 
addition of the SSIM image quality terms dramatically 
improves enhancement. Specifically, a 67% increase in SSIM 
value is produced by SSIM diffusion as compared to the 
original SSIM values. More work is needed to fully explore 
the registration process that complements enhancement in this 
framework. 
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