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Abstract—In this paper, we use sparse signal recovery for non-
destructive testing application, where the image of a test sample is
extracted from ultrasonic array data. Using a frequency-domain
model for the received signals, we propose two rearrangements
of the data model to convert it to the format needed for
sparse signal recovery. Each proposed approach is tested on
the experimental data and the performance is compared with
a MUSIC based imaging algorithm. The first rearrangement
uses the measurement data obtained from individual transmitter
elements in the array at a single frequency bin. We call this
approach incoherent compressive sensing (IncCS). The second
rearrangement is based on multiple measurement vectors (MMV)
model. While the IncCS image has less background noise, the
MMV results show better resolution in imaging the targets in
the region of interest (ROI). The performance of the proposed
approaches is better than MUSIC based algorithm. The MMV
results also show that by using only half of the ultrasonic elements
in the array, we can obtain an image which has comparable
performance with the image obtained using the full array data.

I. INTRODUCTION

In the last decade, compressive sensing (CS) theory has

emerged in the field of digital signal processing [1]. The theory

suggests that for the family of sparse or approximately sparse

signals, a much more efficient course of sampling and recovery

method can be developed.

Ultrasonic non-destructive testing (NDT) is one of the areas

where the need of evaluating huge amount of materials and

surfaces demands quicker ultrasonic signal acquisition. An

ultrasonic test is usually carried out on a material which is

supposed to be in its good shape unless there is a crack,

corrosion, or cavity inside. This motivates us to look at the

NDT imaging as a sparse signal recovery problem and employ

sparsity of the underlying image which has been ignored by

other array processing based methods. Having said that, we are

interested in developing a model which reflects the sparsity of

the medium under test and in the next step use a sparse signal

recovery approach to reconstruct the sparse image representing

the characteristics of this medium.

CS aims to find a stable algorithm to solve an under-

determined system of linear equations, while the unknown

vector is known to be sparse. Stable signal recovery means

that CS finds a solution which is unique, or in a probabilistic

point of view, is close enough to the optimal unique solution.

CS achieves stable signal recovery by using measurements

whose length is much smaller than the size of the sparse signal.

These measurements are collected in a non-adaptive manner

i.e., the measurement process is independent of the sparse

signal. Consider the following noisy measurement model:

y = Ac+ v (1)

where A ∈ R
m×n. In (1), c ∈ R

n is the sparse signal, y is

the measurement vector, and v is the measurement noise. A

proposed convex approach to recover the sparse vector c is

min
c
′

‖c′‖1 subject to ‖Ac′ − y‖2 ≤ ǫ. (2)

This optimization problem is called basis pursuit de-noising

(BPDN) [2]. In (2), ǫ is the estimation of the variance of the

noise.

Recently, joint sparse model or MMV model has attracted

considerable attention in the field of CS ( [3] and [4]). The aim

of MMV problem is to identify the unknown common support

of multiple measurements. These multiple measurements are

made from signals which share roughly the same locations for

their non-zero elements. The MMV formulation in a noiseless

environment is

Y = AC (3)

where Y ∈ R
m×N and C ∈ R

n×N . In this notation, C is the

row sparse matrix which has only a few non-zero rows, and

N is the number of multiple measurements. To measure the

number of non-zero rows of C, K is defined as K = ‖C‖0,q
where ‖C‖r,q is defined as

‖C‖r,q ,
(

∑

i

‖C(i, :)T ‖rq

)1/r

. (4)

Here, C(i, :) is the ith row of matrix C. Because of the non-

convexity of l0-norm, a relaxed version of the K is introduced

based on l1-norm as R(K) =‖ C ‖1,q. A proposed solution to

the MMV problem in the noisy scenario is obtained by solving

the following optimization problem ( [5] and [6]).

min ‖C‖1,2 subject to ‖AC−Y‖2,2 ≤ σ. (5)

This formulation is called MMV-BPDN. Different studies have

used different combinations of r and q values. Choosing r

determines the speed of convergence and also the sparsity of

the solution to the problem. A smaller value of r speeds up

the convergence, however it increases the likelihood of the

algorithm getting trapped in a local minima [5]. A combination

of r = 1 with q = 2 is studied in [6] and [7].
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II. DATA MODEL

Assume an array of N transducer elements are used to

obtain an image of a test sample. The elements can both

transmit and receive signals. Each time one element transmits

signal and the they all receive the backscattered signal. Indices

p and n are used for the element in transmission mode and

that in receiver mode, respectively. We cover the ROI with a

fine grid of Lg points. The distances of the transmitter-grid

point (dlp) and grid point-receiver (dln) paths are calculated

as

dlp =
√

(xp − xl)2 + z2l , dln =
√

(xn − xl)2 + z2l (6)

where in the Cartesian coordinate system, the pth transmitter,

the nth receiver, and the lth grid point are located at (xp, 0),
(xn, 0) and (xl, zl), respectively. The received signal contam-

inated by the receiver noise is modeled as [8]

ynp(ω) =

Lg
∑

l=1

olH
np(ω)

√

dlndlp
e−jk(ω)(dln+dlp)Fp(ω)+vnp(ω) (7)

where ynp(ω) is the received frequency-domain data at fre-

quency bin ω, when the pth transmitter is transmitting and

the nth receiver is receiving. The phase shifts of both trans-

mit and receive paths are captured in the exponential term

e−jk(ω)(dln+dlp), where k(ω) = ω
c and c are the wavenumber

and the ultrasonic wave propagation speed, respectively. In

a 2-dimensional ROI, the beam spread governs the inverse

power law, which is the reason why we use a square root for

the attenuation factor in (7). In this model, vnp(ω) denotes

the corresponding observation noise when Transmitter p is

transmitting and Receiver n is receiving the backscattered

signal. Hnp(ω) captures both electrical-to-acoustic transfer

function of the pth transmitter and the acoustic-to-electrical

transfer function of the nth receiver. Fp(ω) is the signal

transmitted by the pth transmitter at frequency bin ω. Finally,

ol is the reflection coefficient of the lth point on the grid

and it is non-zero if there is a point reflector at this point.

We assume that the transfer functions for all the transmitter-

receiver elements of the transducer are the same, meaning that

Hnp(ω) = H(ω). We also assume Fp(ω)H(ω) = 1. Using

these assumptions, we can rewrite (7) in the following form:

ynp(ω) =

Lg
∑

l=1

1
√

dlndlp
ole

−jk(ω)(dln+dlp) + vnp(ω). (8)

A frequency-dependent near-field steering vector correspond-

ing to the lth point on the grid is defined as

ψl(ω) ,

[

e−jk(ω)dl1

√
dl1

e−jk(ω)dl2

√
dl2

. . .
e−jk(ω)dlN

√
dlN

]T

. (9)

The received data vector and the measurement noise vector,

when the pth transmitter is transmitting, are defined as

yp(ω) , [y1p(ω) y2p(ω) . . . yNp(ω)]
T

vp(ω) , [v1p(ω) v2p(ω) . . . vNp(ω)]
T . (10)

We further define slp(ω) as

slp(ω) , ol
1

√

dlp
e−jk(ω)dlp . (11)

Using (9)-(11), the vector form of (8) is written as

yp(ω) =

Lg
∑

l=1

ψl(ω)s
l
p(ω) + vp(ω). (12)

Using the following definitions:

Ψ(ω) , [ψ1(ω) ψ2(ω) . . . ψLg
(ω)] (13)

sp(ω) , [s1p(ω) s2p(ω) . . . sLg

p (ω)]T (14)

we rewrite (12) in the matrix form, as

yp(ω) = Ψ(ω)sp(ω) + vp(ω). (15)

The data model is similar to the general model introduced in

(1) which is used in the CS literature. In this model, sp(ω) is

a sparse vector.

III. COMPRESSIVE SENSING BASED IMAGING

The non-zero entries of the vector formulated in (14)

correspond to the point reflectors in the ROI. The entries of this

vector are non-zero, if ol in (11) belongs to a point reflector

in the ROI. In this section, two approaches are proposed to

recover sp(ω), based on sparse signal recovery methods.

A. Incoherent Compressive Sensing

It is obvious from the model presented in (15) that the sparse

vector sp(ω) is a function of both transmitter index and angular

frequency. This model suggests an incoherent processing in

which one can solve different optimization problems for differ-

ent transmitter indices at a chosen frequency bin. At a single-

frequency bin, we solve N individual l1-norm minimization

problems of the form:

ŝp(ω) = min
s
′

p(ω)
‖s′p(ω)‖1s.t ‖yp(ω)−Ψ(ω)s′p(ω)‖2 ≤ ε (16)

for p = 1, 2, . . . , N . It is assumed that ε is the same

for all the l1-norm minimization problems. Solving each

minimization problem yields a complex sparse vector whose

major coefficients are representing the non-zero elements of

sp(ω). In the next step, these results are combined to obtain the

final image of the ROI. A logical way to do this is to normalize

each result by its own maximum value and sum them up for

different transmitter indices. The logic behind normalization

is that the coefficients are dependent on the distances from

the transmitter elements in the array, and they are different

in value for the same scatterer, when the transmitter index

changes. This process yields the final image as

IInc−CS(ω) =

N
∑

p=1

∣

∣

∣

∣

ŝp(ω)

max (ŝp(ω))

∣

∣

∣

∣

(17)

where IInc−CS(ω) is the recovered sparse image, and

max (ŝp(ω)) is with a small abuse of notation, the maximum

of the entries of vector ŝp(ω).
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B. Multiple Measurement Vectors

In (15), we can see that for different transmitter indices a

common Ψ(ω) is needed as the measurement matrix. This

suggests that we can arrange all the N measurement vectors

at the frequency bin ω, in a matrix Y(ω) of size N ×N as

Y(ω) = [y1(ω) y2(ω) . . . yN (ω)] (18)

and consider the problem as an MMV problem. Using the

multiple images, the row-sparse matrix S(ω) ∈ R
Lg×N is

built as

S(ω) = [s1(ω) s2(ω) . . . sN(ω)]. (19)

The MMV model at each frequency bin is

Y(ω) = Ψ(ω)S(ω) +V(ω) (20)

where V(ω) = [v1(ω) v2(ω) . . . vN (ω)] is the noise ma-

trix. We assume that vp(ω) has the same variance. In the

model we used, the row sparse property holds true because

the images in (19) are identical except for some slightly

differences in the amplitude of the entries of sp(ω), for

different p indices. In the recovery step, we use a mixed norm

convex optimization approach of the from of (5), i.e.,

Ŝ(ω) = min ‖S′(ω)‖1,2 s.t ‖Ψ(ω)S′(ω)−Y(ω)‖2,2 ≤ σ

(21)

where σ is a user parameter which represents the estimation

of the noise variance level. The MMV image is obtained by

averaging all columns of Ŝ(ω) into a vector.

IV. ASSESSMENT

In this study, we use a 5MHz, 64-element linear phased

array transducer to image several cylindrical side drilled holes

in an aluminium block (Fig. 1). The array has an active

aperture of 38.4mm, element pitch of 0.6mm and sampling

rate of 100MHz. A grid of size Lg = 16275 is considered for

the experiment. The aperture of ultrasound array transducer is

covering 3 holes. To solve the l1-norm minimization problems

Fig. 1: The schematic of the experiment setup

we use CVX [9] and the MMV problems are solved using

SPGL1 [10]. After doing multiple tests to determine the best

parameter values, the MUSIC image is obtained using a signal

subspace dimension of 40. We plot all the algorithms’ images

in the linear scale and to make a fair comparison possible,

we normalize the result of each individual algorithm to its

maximum value. This normalization will give us the images

which are scaled from 0 to 1 in the gray scale. In the gray

images, the closer the color to white, the higher the intensity

of the point is, which indicates the location of the holes.
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(a) IncCS image
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(b) MMV image

Fig. 2: Comparing IncCS and MMV images at a single frequency bin

A. Results

Fig. 2 shows the results of IncCS and MMV approaches,

when a single frequency bin is used. Fig. 2(a) shows that

IncCS approach is capable of imaging the three holes under

the transducer array. This approach has failed to image Holes

1 and 5 in the corners. The MMV result, in Fig. 2(b), shows a

higher resolution than the IncCS image. The MMV method

is also capable of imaging wider area under the array by

capturing Hole 5 in the image. However, we can see that the

background noise in the incoherent processing image is less,

compared to the MMV image. The MMV image provides a

better estimation of the true diameter of the holes.

In the next step of our assessment, we have obtained the

IncCS, MMV, and MUSIC images averaged over 6 frequency

bins equally distanced between 5.1 MHz and 7.6 MHz (Fig. 3).

Comparing the first three images in Fig. 3, we can see that

the proposed CS based approaches show smaller sidelobe

levels in the lateral and range directions compared to the

MUSIC algorithm. The better resolution in the MMV image

and its ability to capture Hole 5 are the advantages of using

MMV over the incoherent compressive sensing. The MMV

also provides a better estimation of the diameter of the holes,

especially for Holes 2 and 3. A valuable observation in

Fig. 3(c) is that averaging over different frequency bins has

resulted in capturing Holes 1 and 5 in the ROI.

Finally, we test a situation where we now assume that our

array has only the 32 odd indexed elements. We do this by

removing the data from all the even indexed elements in the

array, which results in a data matrix of the size of 32 × 32.

The MMV approach is applied to this data and the averaged
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(a) MUSIC at signal subspace 40
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(b) IncCS
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(c) MMV full array
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(d) MMV half array

Fig. 3: Comparing the MUSIC, MMV and IncCS images averaged over 6 frequency bins

image over 6 frequency bins is shown in Fig. 3(d). This figure

shows that even using half array data we can achieve a very

good performance in imaging the area under the transducer.

The sidelobe level of the image in Fig. 3(d) is better compared

to the MUSIC image.

The MMV test using full array data, shows a better esti-

mation of the amplitude of Holes 2, 3 and 4 by providing

TABLE I: Maximum amplitude comparison for different algorithms

Holes ⇒ 1 2 3 4 5
Algorithm ⇓

MUSIC 0.2872 0.8739 1 0.8369 0.1411
IncCS 0 0.6647 1 0.9345 0

MMV full array 0.0938 0.9225 0.8717 1 0.1241
MMV half Array 0 0.8020 0.8455 1 0

a closer values for the maximum amplitudes. This becomes

obvious if we compare the amplitude values for the holes, as

provided in Table I. In Table I, the maximum amplitudes of

the normalized images of different algorithms are compared.

In this table, the higher the value is the better the hole is

distinguishable from the background. Also, closer values for

the amplitude of the holes in each algorithm means that the

algorithm better estimates the holes in different depths. The

discussion about the sidelobe of different images in Fig. 3, and

the values in Table I show that the CS based approaches can

be considered as a promising practical approach in the NDT

ultrasound imaging. The array location is such that holes 3

and 4 are in the center, this is why the intensity of the image

at these holes is higher than the other holes.

V. CONCLUSION

In this paper, using experimental results, we showed that

the compressive sensing approach is a powerful tool which

can be used in NDT ultrasound imaging. We also showed

that coherent processing of the array data through multiple

measurement vectors (MMV) will outperform the incoherent

processing. And lastly, using MMV method we showed that

only using half of the array elements, we achieve better

performance than incoherent compressive sensing and the

MUSIC algorithm in imaging the area bellow the transducer.
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