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Abstract—In the presence of colored noise, subspace based
harmonic retrieval algorithms suffer a performance degradation
due to the interference between signal and noise subspaces.
In order to efficiently separate the signal and noise subspaces,
prewhitening is applied to decorrelate the noise samples prior to
harmonic retrieval. When noise-only observations are unavailable
for estimating the noise statistics, recently we have proposed
an iterative algorithm for joint multidimensional prewhitening
and harmonic retrieval. In this algorithm, harmonic retrieval
can be applied during the iterations or only after convergence,
and there are two ways to initialize the prewhitening matrices,
leading to four variants. In this work, we investigate and compare
these variants of the iterative prewhitening algorithms. Our
study shows that, ignoring the parametric signal structure during
the iterations leads to more stable performance with higher
probability of global convergence. In spite of this, under medium-
to-high signal-to-noise ratio conditions, the iterative prewhitening
algorithm without exploiting the parametric signal structure may
converge more slowly than that does.

Keywords—Prewhitening, Kronecker colored noise, harmonic
retrieval, tensor ESPRIT, multilinear algebra.

I. INTRODUCTION

Retrieval of harmonics from R-dimensional (R-D) noisy
measurements, where R ≥ 2, has a variety of applications
ranging from radar to mobile communications and medical
imaging. Subspace approaches to R-D harmonic retrieval (HR)
such as R-D ESPRIT [1], [2], R-D MUSIC [3], and PUMA [4]
utilize the signal and noise subspaces for HR. In the presence
of colored noise, due to noise correlation, most of the noise
energy is contained in a small fraction of the whole space
spanned by a few principal eigenvectors. This may interfere
the estimation of the signal subspace and leads to a perfor-
mance degradation of the parameter estimation. Prewhitening
decorrelates the noise components, so that the noise power is
uniformly distributed over the whole noise subspace, which
facilitates the separation of the signal and noise subspaces and
hence improves the estimation performance.

In [5], multidimensional prewhitening algorithms have
been proposed in order to improve the performance of multidi-
mensional parameter estimators. By exploiting the Kronecker
structure of the noise correlation matrix, accurate noise mod-
eling can be achieved with a few noise-only measurements for
estimation of the noise statistics, leading to good separation of
the signal and noise subspaces and noise reduction and hence
an improved accuracy of subsequent HR. When noise-only

observations are unavailable for estimating the noise statistics,
an iterative algorithm for joint multidimensional prewhitening
and HR is employed. In this algorithm, HR can be incorporated
in each iteration or only applied after convergence, and there
are two ways to initialize the prewhitening matrices, leading to
four variants. In this work, we investigate and compare these
variants of the iterative multidimensional prewhitening (I-MD-
PWT) algorithms under different signal-to-noise ratio (SNR)
conditions. Our study shows that, ignoring the parametric
signal structure during the iterations leads to more stable per-
formance as well as higher probability of global convergence.
Still, for medium-to-high SNRs the iterative prewhitening
algorithm without exploiting the parametric signal structure
may converge more slowly than that does.

II. DATA MODEL

Notation: The superscripts T,H, and † stand for trans-
position, Hermitian transposition, and Moore-Penrose pseudo
inverse, respectively. The r-mode vectors of a tensor T ∈
CI1×⋅⋅⋅×IR are obtained by varying the r-th index within its
range (1, . . . , Ir) and keeping all the other indices fixed.
The r-mode unfolding of T , symbolized by [T ]

(r) ∈
CIr×(I1...Ir−1Ir+1...IR), represents the matrix consisting of its
r-mode vectors. The r-mode product of T and a matrix
U ∈ CJr×Ir along the r-th mode is denoted as T ×r U ∈
CI1×⋅⋅⋅×Jr ⋅⋅⋅×IR . It is obtained by multiplying the r-mode vectors
of T from the left-hand side by U [6].

Consider the uniform multidimensional HR problem [7],
where the noisy observations are modeled as a superposition
of d R-D complex sinusoids (cisoids) and colored noise with
a Kronecker correlation structure [8]–[10]:

X =
d

∑
i=1

a
(1)
i ○ ⋅ ⋅ ⋅ ○ a(R)

i ○ sTi +N (c), (1)

where a(r)
i = [1, ejµ

(r)
i , . . . , ej(Mr−1)µ

(r)
i ]

T

∈ CMr×1 is the
steering vector associated with the i-th source in the r-th
mode, i = 1, . . . , d, r = 1, . . . ,R, with {µ(r)

i } being the spatial
frequencies, and si ∈ C1×MR+1 contains the samples of the i-th
signal with MR+1 = N , standing for the number of snapshots.

The N (c) ∈ CM1×⋅⋅⋅×MR×N collects Kronecker colored
noise samples which are characteristic by the following corre-
lation structure:

C = CR+1 ⊗ ⋅ ⋅ ⋅ ⊗C1, (2)
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where C ∈ C(M1...MRN)×(M1...MRN) and Cr ∈ CMr×Mr ,
r = 1, . . . ,R + 1, respectively, denote the noise covariance
matrix in all modes and r-th mode [5]. The multidimen-
sional Kronecker colored noise exists in EEG/MEG [10] and
MIMO [9] applications. The N (c) can be expressed as

N (c) =N ×1 L1 ⋅ ⋅ ⋅ ×R+1 LR+1, (3)

where N ∈ CM1×⋅⋅⋅×MR×N is a tensor collecting i.i.d. zero-
mean circularly symmetric complex Gaussian (ZMCSCG)
noise samples of variance σ2

n [5], and Lr ∈ CMr×Mr , r =
1, . . . ,R+1, is the correlation factor in the r-th mode satisfying
Cr = Lr ⋅LH

r .

Defining A(r) = [a(r)
1 , . . . ,a

(r)
d ] ∈ CMr×d, r = 1, . . . ,R,

and letting ST =A(R+1) = [s1, . . . ,sd] ∈ CN×d which collects
the source samples over all N snapshots, (1) can be rewritten
in terms of r-mode products as

X = IR+1,d ×1A
(1) ⋅ ⋅ ⋅ ×RA(R) ×R+1 ST +N (c), (4)

where IR+1,d represents the R-D identity tensor of size d ×
⋅ ⋅ ⋅ × d, whose elements are equal to one when the indices
i1 = ⋅ ⋅ ⋅ = iR+1 and zero otherwise.

Letting

A = IR+1,d ×1A
(1) ⋅ ⋅ ⋅ ×RA(R), (5)

(4) can be expressed in a more compact form as

X =A ×R+1 ST +N (c). (6)

The SNR is

SNR = ∥A ×R+1 ST∥2F
M1 . . .MRNσ2

n

, (7)

where ∣∣ ⋅ ∣∣F represents the Frobenius norm of a matrix or
tensor, which is defined as the square root of the sum of the
squared amplitudes of its elements. Given X and the number
of components d, the objective is to estimate µ(r)

i , r = 1, . . . ,R,
i = 1, . . . , d.

III. ITERATIVE MULTIDIMENSIONAL PREWHITENING
WITHOUT NOISE SAMPLES

The prewhitening process typically requires the indepen-
dent (secondary) noise-only observations to estimate the noise
statistics. In case noise-only observations are unavailable, an
iterative algorithm for joint prewhitening and HR has been
proposed in [5]. In this section, its four variants are presented.

A. Iterative Prewhitening and Signal Estimation

In the first scheme, denoted as I-MD-PWT I, the parametric
structure of the signals is ignored during the iterations. The
iterative algorithm for joint noise estimation, prewhitening and
signal estimation is described in Table I.

The variation of the estimated noise tensor N̂
(c)

(i.e.,
signal reconstruction error) can be used as a measure to
terminate the iterations. In [5], an adaptive threshold that varies
with the noise power is employed in the termination criterion
such that the iterations stop at an optimal number of iterations.

Table I. ITERATIVE ALGORITHM FOR JOINT NOISE ESTIMATION,
PREWHITENING AND SIGNAL ESTIMATION

Initialization: The prewhitening matrices (correlation factors) are set
as identity matrices: L̂r = IMr , r = 1, . . . ,R + 1;

(1) Higher-order SVD (HOSVD) based low-rank approximation
of X [6]:

X̌ = S[t] ×1 U [t]
1 ⋅ ⋅ ⋅ ×R+1 U [t]

R+1 ∈ CM1×⋅⋅⋅×MR+1 , (8)

where S[t] ∈ Cp1×⋅⋅⋅×pR+1 , and U
[t]
r ∈ CMr×pr with pr =

min(Mr, d), r = 1, . . . ,R+1, are truncated to the d columns
corresponding to the d largest singular values.

(2) Noise estimation:

N̂
(c) = X − X̌ .

(3) Estimation of correlation factors L̂r , r = 1, . . . ,R + 1.
(3.1) Estimation of Cr , r = 1, . . . ,R + 1

Ĉr = 1

βr
[N̂ (c)]

(r)

[N̂ (c)]
H

(r)

.

where βr is the normalization coefficient such that
tr (Ĉr) =Mr .

(3.2) Cholesky decomposition:

Ĉr = L̂rL̂
H

r , r = 1, . . . ,R + 1.

(4) Prewhitening and dewhitening.
(4.1) Prewhitening:

X ′ = X ×1 L̂−1

1 ⋅ ⋅ ⋅ ×R+1 L̂−1

R+1. (9)

(4.2) HOSVD based low-rank approximation of X ′:

X̌ ′ = S[t] ×1 U [t]
1 ⋅ ⋅ ⋅ ×R+1 U [t]

R+1. (10)

(4.3) Dewhitening:

X̌ = X̌ ′ ×1 L̂1 ⋅ ⋅ ⋅ ×R+1 L̂R+1

= S[t] ×1 (L̂1U
[t]
1 ) . . .

×R+1 (L̂R+1U
[t]
R+1) .

(5) Repeat Steps (2)-(4) until convergence or the maximum
number of iterations is reached.

Note that compared with [5], here the signal parameter
step has been removed. It has been shown through extensive
simulations that for low-to-intermediate SNRs the simplified
prewhitening scheme leads to smaller estimation error with a
higher probability of convergence than the original version,
while for high SNRs, with slightly more iterations it also
converges to a state with the same estimation error as the
original one.

After convergence, the frequencies {µ(r)
i } are extracted

by applying the unitary tensor-ESPRIT (UTE) [2] on the
following signal subspace tensor

Ǔ [s] = S[t] ×1 (L̂1 ⋅U [t]
1 ) ⋅ ⋅ ⋅ ×R (L̂R ⋅U [t]

R ) .

B. Iterative Prewhitening and Harmonic Retrieval

In the second scheme, denoted as I-MD-PWT II, the para-
metric structure of signals is exploited during the iterations.
That is, additional HR steps shown below are incorporated in
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Step (2) of the algorithm in Table I. As shown in Section IV,
such a scheme of exploiting the parametric signal structure
enjoys faster convergence under high SNR conditions.

(2.1) The estimates of the spatial frequencies at the k-th
iteration, denoted as µ̂(r)

k,i , r = 1, . . . ,R, i = 1, . . . , d,
are obtained by applying the UTE on the signal
subspace tensor Ǔ [s]

, or by applying the closed-
form PARAllel FACtor decomposition [11] based
parameter estimator (CFP-PE) on X̌ .

(2.2) From µ̂
(r)
k,i , r = 1, . . . ,R, i = 1, . . . , d, compute Âk

according to (5). Using X and Âk, calculate Ŝk =
([X ]

(R+1) ⋅ [Âk]
†

(R+1)
)
T

.

(2.3) The noise tensor N̂
(c)

k is estimated as N̂
(c)

k = X −
Âk ×R+1 Ŝ

T

k .

In I-MD-PWT I and I-MD-PWT II, the prewhitening ma-
trices Lr, r = 1, . . . ,R+ 1, are initialized as identity matrices.
Under low SNR conditions where the noise components of the
signal-plus-noise measurements X are much stronger than the
signal components, X itself can be considered as an approxi-
mation of N (c). Therefore, alternatively, Lr, r = 1, . . . ,R+1,
can be initialized from X . Note that in this case, additional
prewhitening and dewhitening steps are required in Step (1)
of the iterative algorithm described in Table I. As a result, we
have four variants for the I-MD-PWT algorithm, as shown in
Table II.

Table II. VARIANTS OF I-MD-PWT SCHEMES.

Initial guess of L̂r Harmonic retrieval
I-MD-PWT I IMr after convergence
I-MD-PWT II IMr each iteration

I-MD-PWT III
estimated from N̂ (c)

≃ X
via Step (3) of the algorithm
in Table I

after convergence

I-MD-PWT IV
estimated from N̂ (c)

≃ X
via Step (3) of the algorithm
in Table I

each iteration

IV. NUMERICAL EXAMPLES

We present simulation results comparing the performance
of the four variants of the I-MD-PWT approaches in Table II.
The parameter settings are set as follows: R = 3, M1 =M2 =
M3 = 7, N = 20, and d = 3. The spatial frequencies of the three
sources are µ1 = [µ(1)

1 , µ
(2)
1 , µ

(3)
1 ]T = [−0.91,−1.69,−1.19]T,

µ2 = [µ(1)
2 , µ

(2)
2 , µ

(3)
2 ]T = [−2.22,1.46,−1.65]T, µ3 =

[µ(1)
3 , µ

(2)
3 , µ

(3)
3 ]T = [−1.25,−2.75,−1.40]T. The source sam-

ples are i.i.d. ZMCSCG distributed. The Kronecker colored
noise is generated according to (3), where along the r-th mode
the colored noise is modeled as a first-order autoregressive
(AR) process. The entries of Lr, r = 1, . . . ,R + 1, are hence
functions of only the AR correlation coefficient ρr [5]. The
AR correlation coefficients in the first 3 modes are set as
ρ1 = 0.9, ρ2 = 0.5, and ρ3 = 0.75. The root mean square error
(RMSE) defined as

RMSE =

¿
ÁÁÁÀ∑Rr=1∑di=1 (µ̂

(r)
i − µ(r)

i )
2

R × d , (11)

is used to measure the performance of the proposed prewhiten-
ing algorithms. Each result represents an average of 100
independent Monte Carlo runs. The UTE is used for HR. For
CFP-PE, similar results are obtained. Therefore, they are not
included here to save space. The UTE without prewhitening
(UTE w/o PWT) and the UTE with prewhitening (MD-PWT
UTE) assuming the knowledge of the noise components are
also incorporated as the benchmarks. Their RMSE curves
are referred to as the performance lower and upper bounds,
respectively.

Figs. 1(a)-(c) show the RMSE trajectories of four I-MD-
PWT schemes versus iteration index k, for three different
SNRs: -10 dB, 10 dB, and 20 dB.

For low SNR of −10 dB shown in Fig. 1(a), as k increases,
the RMSEs of all four I-MD-PWT schemes drop and finally
reach a stable state. The I-MD-PWT I and I-MD-PWT III
converge to a stable state with much lower RMSEs than
the I-MD-PWT II and I-MD-PWT IV. One explanation is
that for low SNRs, parameter estimates may contain large
errors (outliers) depending on the noise realization, which,
when HR is incorporated in the iterative process, as that done
in I-MD-PWT II and I-MD-PWT IV, are propagated to the
reconstructed signals and accumulated and magnified as the
iteration proceeds. Such error propagation and magnification
occur even for an intermediate SNR of 10 dB (See Fig. 1(b)),
particularly in the presence of closely-spaced sources where
inaccurate frequency estimates (at least part of them) are
obtained. On the contrary, I-MD-PWT I and I-MD-PWT III
are free from such error accumulation and magnification, since
HR is not applied until convergence.

Note that the I-MD-PWT III and I-MD-PWT IV converge
faster and/or converge to a better state (with smaller estimation
error) than the I-MD-PWT I and I-MD-PWT II. This is
because, for such low SNRs, the noisy measurements are
dominated by noise components, and hence the initial settings
for the prewhitening matrices L̂0,r, r = 1, . . . ,R + 1, in the
former two variants are more accurate than those of the latter
two. Note also that although with inaccurate initialization of
the prewhitening matrices, the I-MD-PWT I converges to the
same performance to that of the I-MD-PWT III with only 2
more iterations.

When the SNR is close to 0 dB, none of the four variants
performs satisfactorily in the sense that almost no improvement
in estimation accuracy is observed compared to that without
prewhitening (To save the space, the result is not shown). This
may be because, the signal power is comparable to the noise
power, in which case neither initialization scheme for L̂0,r is
accurate. To develop an adaptive I-MD-PWT algorithm whose
initial values of the prewhitening matrices vary with the noise
level deserves further research and is left as future work.

In Fig. 1(b), we see that outliers resulting from error
propagation and magnification occur even for SNR=10 dB.
Consequently, the I-MD-PWT II reaches a steady state with
large mean estimation error that is close to the upper bound. In
contrast, the I-MD-PWT I returns frequency estimates that do
not contain outliers and hence has a small RMSE that attains
the lower bound.

For a high SNR of 20 dB, as shown in Fig. 1(c), both
I-MD-PWT I and II achieve the same best performance with
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only a few iterations, although the latter takes 1 more iteration
to converge. Moreover, for higher SNRs, the same number of
iterations is required for them to converge to the performance
upper bound.

Note that for intermediate and high SNRs, the I-MD-PWT
III and IV fail to work or perform badly due to inaccurate
initialization of the prewhitening matrices.

V. CONCLUSION

In case noise-only observation samples are unavailable,
recently an iterative algorithm for joint prewhitening and
harmonic retrieval has been proposed for a good separation
of signal and noise subspaces, leading to efficient noise re-
duction and enhanced HR. We investigate the effect of 1)
the initialization of the prewhitening matrices and 2) whether
the parametric signal structure is exploited or not during the
iterations, on the prewhitening performance of the iterative
algorithm. Extensive simulations show that, neglecting the
parametric signal structure in the iterations leads to more
stable performance with higher probability of convergence,
particularly under low-to-intermediate SNR conditions. On the
other hand, the iterative prewhitening algorithm is not sensitive
to the initialization of the prewhitening matrices.

REFERENCES

[1] M. Haardt, J. A. Nossek, Simultaneous Schur decomposition of sev-
eral non-symmetric matrices to achieve automatic pairing in multidi-
mensional harmonic retrieval problems, IEEE Transactions on Signal
Processing 46, No. 1 (1998) 161–169.

[2] M. Haardt, F. Roemer, G. Del Galdo, Higher-order SVD based subspace
estimation to improve the parameter estimation accuracy in multi-
dimensional harmonic retrieval problems, IEEE Transactions on Signal
Processing 56 (7) (2008) 3198–3213.

[3] H. L. van Trees, Optimum Array Processing: Detection, Estimation, and
Modulation Theory, New York: Wiley, 2002, Part IV.

[4] W. Sun, H. C. So, F. K. W. Chan, L. Huang, Tensor approach for
eigenvector-based multi-dimensional harmonic retrieval, IEEE Transac-
tions on Signal Processing 61 (13) (2013) 3378–3388.

[5] J. P. C. L. da Costa, K. Liu, H. C. So, S. Schwarz, M. Haardt, F. Römer,
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Figure 1. RMSE of the frequency estimates versus number of iterations under
different SNR conditions.
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