
Hybrid Energy Storage and Generation Planning
with Large Renewable Penetration

Peng Yang and Arye Nehorai
Preston M. Green Department of Electrical and Systems Engineering

Washington University in St. Louis, St. Louis, MO 63130

Email: {yangp, nehorai}@ese.wustl.edu

Abstract—Energy storage is important in a power grid with
high penetration of renewable energy, especially for isolated
grids or micro-grids. Considering the different characteristics of
energy storage devices and the different availability of renewable
energy sources, planning a good portfolio of them is important
for efficient system operation and investment cost minimization.
In this paper we consider the planning problem as a chance-
constrained optimization problem and solve the problem using
scenario approximation. To reduce the computational time, we
formulate the original problem as a consensus problem, and
employ the alternating directional method of multipliers to
solve the optimization problem in a distributed manner. The
results potentially help make decisions on energy storage and
renewable generation planning, and guide policy making related
to renewable energy sources.

I. INTRODUCTION

Currently, only about 3% of the electricity generated in

the United States is from wind and solar [1]. According to

the National Renewable Energy Laboratory (NREL), renew-

able energy potentially can support about 80% of the total

electricity consumption in the U.S. in 2050 [2]. Therefore,

high penetration of renewable energy has become the trend

for future grids. This is especially true for an isolated grid, or

a micro-grid that is self-sustained most of the time.

Most renewable energy sources, including wind and solar,

are highly intermittent, and the amount of generation depends

on the time of day, season, and weather conditions. A grid with

high renewable energy penetration needs to build sufficient

energy storage to ensure an uninterrupted supply to end

users. There are different types of energy storages, including

super-capacitors, flywheels, chemical batteries, water pumps,

and hydrogen [3]-[7]. Different types of energy storage have

different characteristics; for example, they vary in round-trip

energy efficiency, maximum capacity/power rating, and energy

loss over time. Although there has been research on planning

and/or operating a specific type of energy storage system

for isolated electricity grids [8]-[11], few works consider

exploiting the different characteristics of multiple types of

energy storage, forming a hybrid energy storage system. In

addition, different renewable energy sources have different

availability. Jointly planning for energy storage along with

renewable generation potentially results in a more economical

and efficient system.

This work was supported by the International Center for Advanced Renew-
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In this paper, we consider the scenario of an isolated

grid or a micro-grid, whose energy is generated both from

renewable energy sources and traditional thermal generators.

The thermal generator on its own is insufficient to supply the

demand of the grid, as its generation capacity is significantly

less than the peak load. We formulate a chance-constrained

optimization problem, with the objective of minimizing the

investment cost of energy storage and renewable generators.

The renewable generation and user demands change with time,

and have different characteristics at different time of day

and different dates of year. It is often difficult to obtain an

accurate probability density function to reflect these complex

characteristics. Therefore we propose to solve the original

problem using scenario approximation, where the scenarios

are based on historical data. To reduce the time complexity

due to a large number of scenarios, we formulate the scenario

approximation problem as a consensus problem, which can

then be solved in a distributed manner based on the alternating

direction method of multipliers (ADMM) [12]. The results

of this paper provide information on planning energy storage

systems for isolated grids or micro-grids, and guide policy

making related to renewable energy sources.

The rest of this paper is organized as follows. In Sec. II we

describe the system model, including the energy storage and

generators. In Sec. III we formulate the optimization problem

and solve it in a distributed manner. We provide numerical

examples in Sec. IV, and conclude the paper in Sec. V.

II. SYSTEM MODEL

A. Energy storage model

We consider that there is a set S of different types of energy

storages. We use superscript s ∈ S to denote the type of the

storage. Each type of energy storage is characterized by the

following parameters:

- ηs: one-way energy efficiency

- δs: rated power/energy ratio

- ξs: energy loss ratio per unit time

- cs: installation cost per unit storage.

Let Ss
t denote the energy in storage s at the beginning of

time period t, satisfying the following equation:

Ss
t+1 =

⎧⎨
⎩
Ss
t −

1

ηs
P s
t − ξsSs

t if P s
t ≥ 0,

Ss
t − ηsP s

t − ξsSs
t if P s

t < 0,

(1)
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where positive P s
t denotes discharge from storage s during

time period t, and negative P s
t denotes charge to the storage.

Make the following substitution:

P s
t = P s,+

t − P s,−
t , P s,+

t ≥ 0, P s,−
t ≥ 0, (2)

and we can then rewrite (1) as

Ss
t+1 = Ss

t −
1

ηs
P s,+
t + ηsP s,−

t − ξsSs
t . (3)

An interpretation of (3) is that the energy stored in a specific

energy storage type equals the stored energy at the beginning

of the previous time point, minus (plus) the discharge (charge)

during the previous time period, minus the energy loss due

to the nature of the storage. For convenience of formulating

the optimization problem, we impose an additional assumption

that the state of charge remain the same at the beginning and

the end of the optimization horizon, as used in [9], i.e.,

Ss
T = Ss

0, ∀s ∈ S. (4)

Thus the storages achieves “net zero” energy increase during

each optimization horizon. The amount of stored energy and

the charge/discharge power is constrained as follows

0 ≤ Ss
t ≤ Ss

max (5)

0 ≤ P s,+
t ≤ P s,+

max, 0 ≤ P s,−
t ≤ P s,−

max. (6)

In this work we use δs to denote the ratio between the rated

power and the rated energy of the storage. Therefore P s,+
max =

ηsδsSs
max and P s,−

max = δsSs
max.

B. Generator model
The generators are classified into thermal generators and

renewable generators. For thermal generators, the constraints

include the generation capacity and generator ramp constraints.

Denote the thermal generation as Ht, and we then have

0 ≤ Ht ≤ Hmax (7)

H−
ramp ≤ Ht+1 −Ht ≤ H+

ramp. (8)

We employ multiple types of renewable generators, includ-

ing wind and solar, which are considered as non-dispatchable

generations. Let Rr
t denote the renewable generation from type

r ∈ R generator during time period t, and Rr
max denote the

installed capacity. Then the generation can be written as

Rr
t = rrtR

r
max (9)

where rr is a random variable denoting the renewable gener-

ation per unit generation capacity.

C. Load balance constraint
The total generation should equal the total demand in a

power grid. Let Gt denote the energy shortage for an isolated

grid, or energy drawn from the main grid for a micro-grid. We

can then write the load balance constraint as follows:

Dt =
∑
r∈R

Rr
t +Ht +

∑
s∈S

(
P s,+
t − P s,−

t

)
+Gt (10)

where Dt denotes the demand from users. Note that Gt can

be negative, which denotes energy injection to the main grid

from a micro-grid, or dumped energy in an isolated grid.

III. STORAGE AND RENEWABLE GENERATION PLANNING

A. Problem formulation

The goal of hybrid energy storage planning is to minimize

the initial investment cost for different types of energy storage

and generators, so that most of the needs of the grid can

be satisfied. The objective function is the total cost for the

investment in the storage and generators, i.e.,

f(Smax,Rmax) =
∑
s∈S

csSs
max +

∑
r∈R

crRr
max. (11)

The grid reliance constraint (for micro-grids) or the energy

shortage constraint (for isolated grids) can be written as

Pr(Gt ≤ Gth) ≥ 1− α (12)

where Gth is a threshold which can be a function of time and

load, and α ∈ [0, 1] is a pre-specified probability. Constraint

(12) means that local generators and storages have a proba-

bility of greater than or equal to 1− α to be short of energy

less than Gth. The optimization problem is formulated as

min
Smax,Rmax

f(Smax,Rmax)

subject to Storage const. (3)− (6), ∀s, t
Generator const. (7)− (9), ∀r, t
Load balance const. (10), ∀t
Energy shortage const. (12), ∀t.

(13)

B. Scenario approximation

The renewable generation and user loads in (13) are all

random, and therefore the constraint (12) makes the problem

challenging to solve. Previous works have shown that the

probability constraint (12) can be approximated by a set of

deterministic constraints,

Gj
t ≤ Gth, ∀t, j ∈ J (14)

with the number of required scenarios J = card(J ) deter-

mined by the number of design parameters and the probability

measure. For details please refer to [13], [14].

Let xj = [(Sj
max)

�, (Rj
max)

�]�, z = [S�
max,R

�
max]

�, Cj

denote the feasible set for the jth scenario, and pj denote

the probability of the jth scenario. We can then formulate the

original optimization problem as a consensus problem.

min
z,xj∈Cj ,j∈J

∑
j∈J

pjf j(xj)

subject to xj = z, j ∈ J .

(15)

C. Distributed Optimization

The challenge in solving (15) is that as the number of

scenarios increases, the problem becomes increasingly difficult

due to high time complexity. We propose to solve the problem

in a distributed manner based on the alternating direction

method of multipliers (ADMM) [12], which mitigates the time

complexity issue.

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

461



For notational simplicity, we include the probability term

pj into f j(xj). The augmented Lagrangian of (15) is then

Lρ

({xj}, z, {vj})
=

∑
j∈J

(
f(xj) + vj�(xj − z) +

ρ

2
‖xj − z‖22

)
, (16)

where {vj} denote the dual variables, and ρ is a pre-defined

parameter which is the dual variable update step size. The

additional quadratic term penalizes the difference between the

local variables {xj} and the global variable z. The ADMM

algorithm iterates among the following steps, with subscript k
denoting the iteration number.

xj
k+1 = argmin

xj∈Cj

f(xj)+vj�(xj−zk)+
ρ

2
‖xj−zk‖22, ∀j ∈ J ,

(17)

zk+1 = argmin
z

∑
j∈J

(
vj�(xj

k+1 − z) +
ρ

2
‖xj

k+1 − z‖22
)

=
1

J

∑
j∈J

(
xj
k+1 +

1

ρ
vj
k

)
,

(18)

vj
k+1 = vj

k + ρ
(
xj
k+1 − zk+1

)
, ∀j ∈ J . (19)

Steps (17) and (19) can be parallelized, making the problem

scalable as the number of scenarios increases.

Remark: The convergence of this approach is guaranteed

[12]. For faster convergence, an heuristic approach is to replace

the step (18) with

zk+1 = max elj∈J

(
xj
k+1 +

1

ρ
vj
k

)
. (20)

where max el is an operator that selects the element-wise

maximum value. Our numerical experiments show that (20)

results in faster convergence than (18).

IV. NUMERICAL EXAMPLES

A. Data and parameters

We take user load data from the MISO daily reports by the

U.S. Federal Energy Regulatory Commission (FERC) [15],

wind generation data from the Ontario Power Authority [16],

and solar generation data from Elia [17], all for the duration of

one year1. All the data used in this section are normalized. The

user load data is normalized by the average hourly demand,

and the wind and solar generation data is normalized by the

installed capacity. The reason for using real data instead of

randomly generating data from certain distributions is for

better reflection of the temporal characteristics of consumer

demands and renewable energy availability. Fig. 1 shows a

set of box plots of the data we use. Note that the data also

exhibit seasonal variations, which we do not show here due

to limitation of space. In practice, multiple years of historic

data for the region of study should be used for more accurate

results. In fact, the number of scenarios should be set following

the results from [13], if sufficient data is available.

1The solar generation data is not complete for one year, and therefore
partial missing data is generated by replicating data from months with similar
weather conditions

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00
0.6

0.8

1

1.2

1.4

1.6

D
em

an
d

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00
0

0.2

0.4

0.6

0.8

1

W
in

d 
G

en
er

at
io

n

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00
0

0.2

0.4

0.6

0.8

S
ol

ar
 G

en
er

at
io

n

Fig. 1: Box plots for demand, wind, and solar data used in the

numerical examples.

TABLE I: Parameters for different types of energy storage and

renewable generators

Type S1 S2 S3 R1 R2

Roundtrip efficiency 0.95 0.85 0.60 – –
Power/energy ratio 1.00 0.20 0.10 – –
Energy loss ratio 0.05 0.01 0.00 – –
Unit investment cost 1.00 1.25 1.20 2.00 1.80
Min install capacity 0.00 0.00 0.00 0.00 0.00
Max install capacity 5.00 5.00 5.00 5.00 5.00

We consider three types of energy storage, and two types

of renewable generators, with the parameters listed in Table I.

For convenience and simplicity, the cost and capacity are also

normalized, with per unit (p.u.) as the units.
To quantify Gth and Hmax, we define two quantities:

the shortfall to demand ratio (SDR), rSD, and the thermal

generation ratio (TGR), rTG. We define the threshold Gth at

time t as

Gth = rSDDt, (21)

and therefore the SDR is the ratio between the threshold Gth

and the current demand. The thermal generator capacity Hmax

is determined by

Hmax = rTG max(Dt), (22)

and therefore the TGR is the ratio between the thermal

generator capacity and the peak demand.
The CVX toolbox [18] is used to solve for the x updates.

B. Storage and generation planning
In this subsection we use the parameters described in Sec.

IV-A, and set rTG = 0.50, and rSD = 0.10. In this case, the
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TABLE II: Optimization results for rTG = 0.5, rSD = 0.10.

z update S1
max S2

max S3
max R1

max R2
max Cost

use (18) 0.7578 0.9261 2.7240 2.1751 0.9697 11.281
use (20) 0.7344 1.1495 2.5184 2.1637 0.9782 11.280
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Fig. 2: Investment cost as a function of TGR and SDR.

thermal generator can provide at most half the peak load of the

grid, and the grid has to supply at least 90% of its energy from

its own generators and storage. We tested both (18) and (20)

for the z-update step. The optimization results are shown in

Table II. Note that although the resulting portfolios are slightly

different, the objective functions (costs) are close. Using (20)

results in fewer iterations with the same stopping criteria.

C. Effects of SDR and TGR

In this subsection we illustrate the effects of SDR and TGR

for storage and renewable generation planning. Intuitively,

higher TGR and SDR will result in lower investment costs.

In Fig. 2 we show how the investment cost changes with SDR

and TGR, when one of them is fixed. Note that in the sim-

ulations we remove the constraint on the maximum capacity

for each type of storage or generator, because otherwise the

optimization might become infeasible when both SDR and

TGR are low. This analysis potentially helps decision makers

decide on the system parameters, e.g., the tolerance of energy

shortage and installation capacity for thermal generators, for

cost efficiency and environmental considerations.

V. CONCLUSIONS

In this paper we formulated the problem of storage and

generation planning for isolated grids or micro-grids with

large penetration of renewable energy sources. We proposed to

optimize the portfolio of different types of energy storages and

renewable generators, to build a hybrid storage and generation

system. In order to make the problem scalable with large

numbers of scenarios, we formulated the original optimization

problem as a consensus problem, which could be solved

in a distributed manner. The results provide information for

decision makers when planning energy storage and genera-

tion systems, and guide policies regarding renewable energy

sources.

In our next work we will consider the problem of optimal

operation of a given hybrid energy storage system, taking

into account the stochastic nature of demand and renewable

generation.
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